• 제목/요약/키워드: Distributed neural network

검색결과 169건 처리시간 0.02초

음성인식을 위한 분산개념을 자율조직하는 신경회로망시스템 (A Neural Net System Self-organizing the Distributed Concepts for Speech Recognition)

  • 김성석;이태호
    • 대한전자공학회논문지
    • /
    • 제26권5호
    • /
    • pp.85-91
    • /
    • 1989
  • 본 연구에서는 자기지도 BP 신경회로망의 은닉노드상의 활성패턴을 음성패턴의 분산표현된 개념으로 설정하고, 이 분산개념을 T.Kohonen의 자율조직 신경회로망(SOFM)의 입력특징으로 하는 복합적 회로망을 제안한다. 이렇게 함으로써 통상의 BP 신경망의 교육에 관련된 어려움과 패턴정합기로 떨어지는 약점을 해소하는 동시에 의미있고 다양한 내부표현을 추출해 낼 수 있다는 강점을 활용할 수 있고, SOFM의 강력한 판단기능을 이용하여 보다 구조적이고 의미있는 개념맵의 배열을 얻을 수 있게 되었다. 결과적으로 전처리가 불필요하고 자기교육이 가능한 독자적인 인식시스템이 구성된다.

  • PDF

분산전원이 연계된 배전계통에 있어서 ANN을 이용한 최적 전압조정방안에 관한 연구 (A Study on the Voltage Regulation Method Based on Artificial Neural Networks for Distribution Systems Interconnected with Distributed Generation)

  • 노대석;김의환
    • 한국산학기술학회논문지
    • /
    • 제10권11호
    • /
    • pp.3130-3136
    • /
    • 2009
  • 본 논문은 분산전원이 연계된 배전계통에 있어서 온 라인 리얼타임으로 조정이 가능한 최적 전압조정방안을 제시한다. 가능한 많은 수용가에게 적정한 전압을 공급하기 위하여 최적 송출전압이 결정되어져야 하는데, 여기서는 급변하는 배전계통의 급격한 부하변동과 분산전원의 불규칙적인 출력특성을 고려하기 위하여, 인공 신경회로망(ANN: Artificial Neural Network)을 이용한 최적 전압조정방안을 제시한다. 본 논문에서 제시한 알고리즘을 이용하여 배전 모델계통에 적용한 결과, 제안한 방법이 다수의 분산전원이 연계된 배전계통의 전압조정에 실용적인 방책임을 확인하였다.

Two Layer Multiquadric-Biharmonic Artificial Neural Network for Area Quasigeoid Surface Approximation with GPS-Levelling Data

  • Deng, Xingsheng;Wang, Xinzhou
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.2
    • /
    • pp.101-106
    • /
    • 2006
  • The geoidal undulations are needed for determining the orthometric heights from the Global Positioning System GPS-derived ellipsoidal heights. There are several methods for geoidal undulation determination. The paper presents a method employing a simple architecture Two Layer Multiquadric-Biharmonic Artificial Neural Network (TLMB-ANN) to approximate an area of 4200 square kilometres quasigeoid surface with GPS-levelling data. Hardy’s Multiquadric-Biharmonic functions is used as the hidden layer neurons’ activation function and Levenberg-Marquardt algorithm is used to train the artificial neural network. In numerical examples five surfaces were compared: the gravimetric geometry hybrid quasigeoid, Support Vector Machine (SVM) model, Hybrid Fuzzy Neural Network (HFNN) model, Traditional Three Layer Artificial Neural Network (ANN) with tanh activation function and TLMB-ANN surface approximation. The effectiveness of TLMB-ANN surface approximation depends on the number of control points. If the number of well-distributed control points is sufficiently large, the results are similar with those obtained by gravity and geometry hybrid method. Importantly, TLMB-ANN surface approximation model possesses good extrapolation performance with high precision.

  • PDF

시스템의 정밀 모델링을 위한 자율분산 신경망 (Self-organized Distributed Networks for Precise Modelling of a System)

  • 김형석;최종수;김성중
    • 전자공학회논문지B
    • /
    • 제31B권11호
    • /
    • pp.151-162
    • /
    • 1994
  • 다차원 시스템(multidimensional system)에 대한 정확한 모델링을 위해 “자율 분산 신경망(Self-organized Distirbuted Networks, SODN)”을 제안하였다. 제안한 신경망은 자율 신경망(Self-organized Networks)과 다수의 소규모 다층 신경망(Multilayer Neural Networks)이 조합되어 지역적 병렬 학습을 수행하는 부분 학습망으로서 학습 속도가 빠르고 학습의 정밀도를 높일 수 있으며 타 부분망 학습에서 문제가 되는 과다한 학습 메모리 소요와 학습되니 않은 영역에 대한 낮은 일반화능력 등의 문제가 보완된 새로운 신경망이다. 학습 실험 결과, 제안한 신경망은 기존의 다층 신경망과 RBF(Radial Basis Function) 신경망에 비해서 우수한 성능을 보였다.

  • PDF

이산 및 분산 시변 지연을 가진 뉴럴 네트워크에 대한 새로운 시간지연 종속 안정성 판별법 (New Delay-dependent Stability Criterion for Neural Networks with Discrete and Distributed Time-varying Delays)

  • 박명진;권오민;박주현;이상문
    • 전기학회논문지
    • /
    • 제58권9호
    • /
    • pp.1809-1814
    • /
    • 2009
  • In this paper, the problem of stability analysis for neural networks with discrete and distributed time-varying delays is considered. By constructing a new Lyapunov functional, a new delay-dependent stability criterion for the network is established in terms of LMIs (linear matrix inequalities) which can be easily solved by various convex optimization algorithms. Two numerical example are included to show the effectiveness of proposed criterion.

신경회로망을 이용한 불량 Data 처리에 관한 연구 (A Study for Bad Data Processing by a Neural Network)

  • 김익현;박종근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1989년도 추계학술대회 논문집 학회본부
    • /
    • pp.186-190
    • /
    • 1989
  • A Study for Bad Data Processing in state estimation by a Neural Network is presented. State estimation is the process of assigning a value to an unknown system state variable based on measurement from that system according to some criteria. In this case, the ability to detect and identify bad measurements is extremely valuable, and much time in oder to achieve the state estimation is needed. This paper proposed new bad data processing using Neural Network in order to settle it. The concept of neural net is a parallel distributed processing. In this paper, EBP (Error Back Propagation) algorithm based on three layered feed forward network is used.

  • PDF

Device Discovery using Feed Forward Neural Network in Mobile P2P Environment

  • 권기현;변형기;김남용;김상춘;이형봉
    • 디지털콘텐츠학회 논문지
    • /
    • 제8권3호
    • /
    • pp.393-401
    • /
    • 2007
  • P2P systems have gained a lot of research interests and popularity over the years and have the capability to unleash and distribute awesome amounts of computing power, storage and bandwidths currently languishing - often underutilized - within corporate enterprises and every Internet connected home in the world. Since there is no central control over resources or devices and no before hand information about the resources or devices, device discovery remains a substantial problem in P2P environment. In this paper, we cover some of the current solutions to this problem and then propose our feed forward neural network (FFNN) based solution for device discovery in mobile P2P environment. We implements feed forward neural network (FFNN) trained with back propagation (BP) algorithm for device discovery and show, how large computation task can be distributed among such devices using agent technology. It also shows the possibility to use our architecture in home networking where devices have less storage capacity.

  • PDF

A Neural Network Model for Building Construction Projects Cost Estimating

  • El-Sawalhi, Nabil Ibrahim;Shehatto, Omar
    • Journal of Construction Engineering and Project Management
    • /
    • 제4권4호
    • /
    • pp.9-16
    • /
    • 2014
  • The purpose of this paper is to develop a model for forecasting early design construction cost of building projects using Artificial Neural Network (ANN). Eighty questionnaires distributed among construction organizations were utilized to identify significant parameters for the building project costs. 169 case studies of building projects were collected from the construction industry in Gaza Strip. The case studies were used to develop ANN model. Eleven significant parameters were considered as independent input variables affected on "project cost". The neural network model reasonably succeeded in estimating building projects cost without the need for more detailed drawings. The average percentage error of tested dataset for the adapted model was largely acceptable (less than 6%). Sensitivity analysis showed that the area of typical floor and number of floors are the most influential parameters in building cost.

인공지능을 이용한 휴머노이드 로봇의 자세 최적화 (Optimization of Posture for Humanoid Robot Using Artificial Intelligence)

  • 최국진
    • 한국산업융합학회 논문집
    • /
    • 제22권2호
    • /
    • pp.87-93
    • /
    • 2019
  • This research deals with posture optimization for humanoid robot against external forces using genetic algorithm and neural network. When the robot takes a motion to push an object, the torque of each joint is generated by reaction force at the palm. This study aims to optimize the posture of the humanoid robot that will change this torque. This study finds an optimized posture using a genetic algorithm such that torques are evenly distributed over the all joints. Then, a number of different optimized postures are generated from various the reaction forces at the palm. The data is to be used as training data of MLP(Multi-Layer Perceptron) neural network with BP(Back Propagation) learning algorithm. Humanoid robot can find the optimal posture at different reaction forces in real time using the trained neural network include non-training data.

순환하는 레이어 연결을 갖는 개선된 On-line 신경회로망의 설계 (Design of an Improved On-line Neural Network with Circulating Layer Connections)

  • 여성원;이종호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 G
    • /
    • pp.2293-2295
    • /
    • 1998
  • In this paper, an improved on-line neural network model is suggested. This neural network is designed to store and recall sequence of key strokes in on-line. The network stores incoming patterns as weight connections between series of layers. The layer has a 2-dimensionally distributed neurons where the location of neurons are relevant to the actual location of computer keyboard. To store longer patterns, the network has circulating layer connections and different patterns can be superposed on the same layer. Also, when the patterns are stored over the layers, the starting layer is not fixed but changed by the characteristics of Patterns to increases network capability. The ways how to choose the starting layer during the store and recall process are investigated.

  • PDF