• Title/Summary/Keyword: Distributed data collection

Search Result 237, Processing Time 0.028 seconds

Delay and Energy Efficient Data Aggregation in Wireless Sensor Networks

  • Le, Huu Nghia;Choe, Junseong;Shon, Minhan;Choo, Hyunseung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.04a
    • /
    • pp.607-608
    • /
    • 2012
  • Data aggregation is a fundamental problem in wireless sensor networks which attracts great attention in recent years. Delay and energy efficiencies are two crucial issues of designing a data aggregation scheme. In this paper, we propose a distributed, energy efficient algorithm for collecting data from all sensor nodes with the minimum latency called Delay-aware Power-efficient Data Aggregation algorithm (DPDA). The DPDA algorithm minimizes the latency in data collection process by building a time efficient data aggregation network structure. It also saves sensor energy by decreasing node transmission distances. Energy is also well-balanced between sensors to achieve acceptable network lifetime. From intensive experiments, the DPDA scheme could significantly decrease the data collection latency and obtain reasonable network lifetime compared with other approaches.

Modeling of Wave Breaking in Spectral Wave Evolution Equation (스펙트럼 파랑모형에서의 쇄파모형)

  • Cho, Yong-Jun;Ryu, Ha-Sang
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.4
    • /
    • pp.303-312
    • /
    • 2007
  • There is still a controversy going on about how to model energy dissipation due to breaking over frequency domain. In this study, we unveil the exact structure of energy dissipation using stochastic wave breaking model. It turns out that contrary to our present understanding, energy dissipation is cubically distributed over frequency domain. The verification of proposed model is conducted using the acquired data during SUPERTANK Laboratory Data Collection Project (Krauss et al., 1992). For further verification, we numerically simulate the nonlinear shoaling process of Conoidal wave over a beach of uniform slope, and obtain very promising results from the viewpoint of a skewness and asymmetry of wave field, usually regarded as the most fastidious parameter to satisfy.

Adaptive Priority Queue-driven Task Scheduling for Sensor Data Processing in IoT Environments (사물인터넷 환경에서 센서데이터의 처리를 위한 적응형 우선순위 큐 기반의 작업 스케줄링)

  • Lee, Mijin;Lee, Jong Sik;Han, Young Shin
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.9
    • /
    • pp.1559-1566
    • /
    • 2017
  • Recently in the IoT(Internet of Things) environment, a data collection in real-time through device's sensor has increased with an emergence of various devices. Collected data from IoT environment shows a large scale, non-uniform generation cycle and atypical. For this reason, the distributed processing technique is required to analyze the IoT sensor data. However if you do not consider the optimal scheduling for data and the processor of IoT in a distributed processing environment complexity increase the amount in assigning a task, the user is difficult to guarantee the QoS(Quality of Service) for the sensor data. In this paper, we propose APQTA(Adaptive Priority Queue-driven Task Allocation method for sensor data processing) to efficiently process the sensor data generated by the IoT environment. APQTA is to separate the data into job and by applying the priority allocation scheduling based on the deadline to ensure that guarantee the QoS at the same time increasing the efficiency of the data processing.

A Study on the Data Collection Methods based Hadoop Distributed Environment (하둡 분산 환경 기반의 데이터 수집 기법 연구)

  • Jin, Go-Whan
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.5
    • /
    • pp.1-6
    • /
    • 2016
  • Many studies have been carried out for the development of big data utilization and analysis technology recently. There is a tendency that government agencies and companies to introduce a Hadoop of a processing platform for analyzing big data is increasing gradually. Increased interest with respect to the processing and analysis of these big data collection technology of data has become a major issue in parallel to it. However, study of the collection technology as compared to the study of data analysis techniques, it is insignificant situation. Therefore, in this paper, to build on the Hadoop cluster is a big data analysis platform, through the Apache sqoop, stylized from relational databases, to collect the data. In addition, to provide a sensor through the Apache flume, a system to collect on the basis of the data file of the Web application, the non-structured data such as log files to stream. The collection of data through these convergence would be able to utilize as a basic material of big data analysis.

A Study on Environmental Factor Recommendation Technology based on Deep Learning for Digital Agriculture (디지털 농업을 위한 딥러닝 기반의 환경 인자 추천 기술 연구)

  • Han-Jin Cho
    • Smart Media Journal
    • /
    • v.12 no.5
    • /
    • pp.65-72
    • /
    • 2023
  • Smart Farm means creating new value in various fields related to agriculture, including not only agricultural production but also distribution and consumption through the convergence of agriculture and ICT. In Korea, a rental smart farm is created to spread smart agriculture, and a smart farm big data platform is established to promote data collection and utilization. It is pushing for digital transformation of agricultural products distribution from production areas to consumption areas, such as expanding smart APCs, operating online exchanges, and digitizing wholesale market transaction information. As such, although agricultural data is generated according to characteristics from various sources, it is only used as a service using statistics and standardized data. This is because there are limitations due to distributed data collection from agriculture to production, distribution, and consumption, and it is difficult to collect and process various types of data from various sources. Therefore, in this paper, we analyze the current state of domestic agricultural data collection and sharing for digital agriculture and propose a data collection and linkage method for artificial intelligence services. And, using the proposed data, we propose a deep learning-based environmental factor recommendation method.

An Attack-based Filtering Scheme for Slow Rate Denial-of-Service Attack Detection in Cloud Environment

  • Gutierrez, Janitza Nicole Punto;Lee, Kilhung
    • Journal of Multimedia Information System
    • /
    • v.7 no.2
    • /
    • pp.125-136
    • /
    • 2020
  • Nowadays, cloud computing is becoming more popular among companies. However, the characteristics of cloud computing such as a virtualized environment, constantly changing, possible to modify easily and multi-tenancy with a distributed nature, it is difficult to perform attack detection with traditional tools. This work proposes a solution which aims to collect traffic packets data by using Flume and filter them with Spark Streaming so it is possible to only consider suspicious data related to HTTP Slow Rate Denial-of-Service attacks and reduce the data that will be stored in Hadoop Distributed File System for analysis with the FP-Growth algorithm. With the proposed system, we also aim to address the difficulties in attack detection in cloud environment, facilitating the data collection, reducing detection time and enabling an almost real-time attack detection.

High Rate Denial-of-Service Attack Detection System for Cloud Environment Using Flume and Spark

  • Gutierrez, Janitza Punto;Lee, Kilhung
    • Journal of Information Processing Systems
    • /
    • v.17 no.4
    • /
    • pp.675-689
    • /
    • 2021
  • Nowadays, cloud computing is being adopted for more organizations. However, since cloud computing has a virtualized, volatile, scalable and multi-tenancy distributed nature, it is challenging task to perform attack detection in the cloud following conventional processes. This work proposes a solution which aims to collect web server logs by using Flume and filter them through Spark Streaming in order to only consider suspicious data or data related to denial-of-service attacks and reduce the data that will be stored in Hadoop Distributed File System for posterior analysis with the frequent pattern (FP)-Growth algorithm. With the proposed system, we can address some of the difficulties in security for cloud environment, facilitating the data collection, reducing detection time and consequently enabling an almost real-time attack detection.

Garbage Collection Synchronization Technique for Improving Tail Latency of Cloud Databases (클라우드 데이터베이스에서의 꼬리응답시간 감소를 위한 가비지 컬렉션 동기화 기법)

  • Han, Seungwook;Hahn, Sangwook Shane;Kim, Jihong
    • Journal of KIISE
    • /
    • v.44 no.8
    • /
    • pp.767-773
    • /
    • 2017
  • In a distributed system environment, such as a cloud database, the tail latency needs to be kept short to ensure uniform quality of service. In this paper, through experiments on a Cassandra database, we show that long tail latency is caused by a lack of memory space because the database cannot receive any request until free space is reclaimed by writing the buffered data to the storage device. We observed that, since the performance of the storage device determines the amount of time required for writing the buffered data, the performance degradation of Solid State Drive (SSD) due to garbage collection results in a longer tail latency. We propose a garbage collection synchronization technique, called SyncGC, that simultaneously performs garbage collection in the java virtual machine and in the garbage collection in SSD concurrently, thus hiding garbage collection overheads in the SSD. Our evaluations on real SSDs show that SyncGC reduces the tail latency of $99.9^{th}$ and, $99.9^{th}-percentile$ by 31% and 36%, respectively.

Availability of Land Surface Temperature Using Landsat 8 OLI/TIRS Science Products (Landsat 8 OLI/TIRS Science Product를 활용한 지표면 온도 유용성 평가)

  • Park, SeongWook;Kim, MinSik
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.463-473
    • /
    • 2021
  • Recently, United States Geological Survey (USGS) distributed Landsat 8 Collection 2 Level 2 Science Product (L2SP). This paper aims to derive land surface temperature from L2SP and to validate it. Validation is made by comparing the land surface temperature with the one calculated from Landsat 8 Collection 1 Level 1 Terrain Precision (L1TP) and the one from Automated Synoptic Observing System (ASOS). L2SP is calculated from Landsat 8 Collection 2 Level 1 data and it provides land surface temperature to users without processing surface reflectance data. Landsat 8 data from 2018 to 2020 is collected and ground sensor data from eight sites of ASOS are used to evaluate L2SP land surface temperature data. To compare ground sensor data with remotely sensed data, 3×3 grid area data near ASOS station is used. As a result of analysis with ASOS data, L2SP and L1TP land surface temperature shows Pearson correlation coefficient of 0.971 and 0.964, respectively. RMSE (Root Mean Square Error) of two results with ASOS data is 4.029℃, 5.247℃ respectively. This result suggests that L2SP data is more adequate to acquire land surface temperature than L1TP. If seasonal difference and geometric features such as slope are considered, the result would improve.

Efficient K-Anonymization Implementation with Apache Spark

  • Kim, Tae-Su;Kim, Jong Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.11
    • /
    • pp.17-24
    • /
    • 2018
  • Today, we are living in the era of data and information. With the advent of Internet of Things (IoT), the popularity of social networking sites, and the development of mobile devices, a large amount of data is being produced in diverse areas. The collection of such data generated in various area is called big data. As the importance of big data grows, there has been a growing need to share big data containing information regarding an individual entity. As big data contains sensitive information about individuals, directly releasing it for public use may violate existing privacy requirements. Thus, privacy-preserving data publishing (PPDP) has been actively studied to share big data containing personal information for public use, while preserving the privacy of the individual. K-anonymity, which is the most popular method in the area of PPDP, transforms each record in a table such that at least k records have the same values for the given quasi-identifier attributes, and thus each record is indistinguishable from other records in the same class. As the size of big data continuously getting larger, there is a growing demand for the method which can efficiently anonymize vast amount of dta. Thus, in this paper, we develop an efficient k-anonymity method by using Spark distributed framework. Experimental results show that, through the developed method, significant gains in processing time can be achieved.