• 제목/요약/키워드: Distributed algorithms

검색결과 592건 처리시간 0.029초

블록체인 기반 합의 알고리즘 연구 (A Study on Consensus Algorithm based on Blockchain)

  • 유순덕
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권3호
    • /
    • pp.25-32
    • /
    • 2019
  • 블록체인 기술 핵심은 이중지불에 대한 합의 문제를 해결하는 것이며 이를 위해 이용되고 있는 알고리즘인 PoW, PoS 및 DPoS에 대하여 살펴보았다. PoW인 작업증명은 스팸 전자 메일을 보내거나 서비스 거부(Denial of service, DoS) 공격을 시작하는 등 컴퓨팅 능력의 사소하거나 악의적인 사용을 막기 위해 실현 가능한 노력을 필요로 하는 합의 시스템이다. PoS인 지분증명은 작업증명(PoW) 알고리즘의 에너지 낭비뿐만 아니라 Nothing at stake 문제를 해결하기 위해 만들어졌으며, 계산능력이 아닌 화폐 보유량에 따라 각 노드의 합의 결정권이 정해진다. DPoS는 분산 네트워크를 통해 소수의 권한을 가진 사용자들이 거래 합의를 유지하는 것으로, PoS는 모든 사용자에게 합의 권한을 가지는 것과 달리 DPos는 합의 권한을 소수의 대표자에게 제공 한다는 것이다. 즉 PoS가 직접 민주주의라면 DPoS는 간접민주주의이다. 본 내용은 블록체인 합의 알고리즘에 대한 연구를 통하여 관련 분야의 지속적인 발달에 기여하고자 한다.

블록체인에서 대용량 컴퓨팅 공격 보호 기술 (Protection Technologies against Large-scale Computing Attacks in Blockchain)

  • 이학준;원동호;이영숙
    • 융합보안논문지
    • /
    • 제19권2호
    • /
    • pp.11-19
    • /
    • 2019
  • 블록체인은 중앙신뢰 기관의 개입 없이 분산 컴퓨팅 환경에서 데이터를 관리하는 기술이다. 블록체인의 보안성, 효율성, 응용성으로 인하여 현재 금융 분야뿐만 아니라 제조, 문화, 공공 등 다양한 분야에서 블록체인 기술이 활용되고 있다. 그동안 블록체인에서 공격자는 51% 이상의 해시 파워를 갖출 수 없다고 여겨졌지만 최근 이에 대한 공격과 피해사례가 발생하고 있으며, 이기적인 채굴자 공격을 포함한 대용량 컴퓨팅 능력을 갖춘 공격의 빈도가 증가하고 있다. 또한, 일반 컴퓨터와 차원이 다른 성능을 발휘하는 양자컴퓨터의 발전은 블록체인의 새로운 위협이 되고 있다. 본 논문에서는 블록체인 특징과 합의 알고리즘에 대해 소개하고 컴퓨팅 연산력을 이용한 블록체인 공격기법을 설명한다. 그리고, 대용량 컴퓨팅 환경 구축방법과 양자 컴퓨터를 사용하는 공격 알고리즘이 블록체인 보안성에 미치는 영향을 분석한다. 마지막으로, 블록체인의 보안성을 향상하기 위한 대용량 컴퓨팅 공격 보호 기술 및 앞으로의 발전 방향을 제시한다.

딥러닝 기반 초음파 홀로그램 생성 알고리즘 개발 (Development of deep learning-based holographic ultrasound generation algorithm)

  • 이문환;황재윤
    • 한국음향학회지
    • /
    • 제40권2호
    • /
    • pp.169-175
    • /
    • 2021
  • 최근 입자 조작, 신경 자극 등을 위해 초음파 홀로그램과 그 응용에 대해 연구가 활발히 되고 있다. 하지만 홀로그램을 생성할 송신 신호 위상의 결정은 이전의 시간 소모적인 반복 최적화 방법에서 크게 벗어나지 않고 있다. 이에 본 연구에서는 광학 홀로그램 생성을 위해 활용된 바 있는 딥러닝 기법을 초음파 홀로그램 생성을 위해 적용하여 소개한다. U-Net을 기반으로 알고리즘을 구성하였으며 원 모양의 데이터셋에 대해 학습하고 영어 알파벳에 대해 평가함으로써 그 일반화 가능성을 검증하였다. 또한 시뮬레이션을 통해 기존 알고리즘과 계산속도, 정확도, 균일도 측면에서 비교하였다. 결과적으로 정확도와 균일도는 기존에 비해 다소 떨어지지만 계산속도가 약 190배 빨라졌다. 따라서, 이 결과를 통해 딥러닝 기반 초음파 홀로그램 생성 알고리즘은 기존 방법보다 초음파 홀로그램을 빠르게 형성할 수 있는 것을 확인할 수 있었다.

Blockchain for Securing Smart Grids

  • Aldabbagh, Ghadah;Bamasag, Omaimah;Almasari, Lola;Alsaidalani, Rabab;Redwan, Afnan;Alsaggaf, Amaal
    • International Journal of Computer Science & Network Security
    • /
    • 제21권4호
    • /
    • pp.255-263
    • /
    • 2021
  • Smart grid is a fully-automated, bi-directional, power transmission network based on the physical grid system, which combines sensor measurement, computer, information communication, and automatic control technology. Blockchain technology, with its security features, can be integrated with Smart Grids to provide secure and efficient power management and transmission. This paper dicusses the deployment of Blockchain technology in Smart Grid. It presents application areas and protocols in which blockchain can be applied to in securing smart grid. One application of each area is explored in detail, such as efficient peer-to-peer transaction, lower platform costs, faster processes, greater flexibility in power generation to transmission, distribution and power consumption in different energy storage systems, current barriers obstructing the implementation of blockchain applications with some level of maturity in financial services but concepts only in energy and other sectors. Wide range of energy applications suggesting a suitable blockchain architecture in smart grid operations, a sample block structure and the potential blockchain technicalities employed in it. Also, added with efficient data aggregation schemes based on the blockchain technology to overcome the challenges related to privacy and security in the smart grid. Later on, consensus algorithms and protocols are discussed. Monitoring of the usage and statistics of energy distribution systems that can also be used to remotely control energy flow to a particular area. Further, the discussion on the blockchain-based frameworks that helps in the diagnosis and maintenance of smart grid equipment. We have also discussed several commercial implementations of blockchain in the smart grid. Finally, various challenges have been discussed for integrating these technologies. Overall, it can be said at the present point in time that blockchain technology certainly shows a lot of potentials from a customer perspective too and should be further developed by market participants. The approaches seen thus far may have a disruptive effect in the future and might require additional regulatory intervention in an already tightly regulated energy market. If blockchains are to deliver benefits for consumers (whether as consumers or prosumers of energy), a strong focus on consumer issues will be needed.

An improved regularized particle filter for remaining useful life prediction in nuclear plant electric gate valves

  • Xu, Ren-yi;Wang, Hang;Peng, Min-jun;Liu, Yong-kuo
    • Nuclear Engineering and Technology
    • /
    • 제54권6호
    • /
    • pp.2107-2119
    • /
    • 2022
  • Accurate remaining useful life (RUL) prediction for critical components of nuclear power equipment is an important way to realize aging management of nuclear power equipment. The electric gate valve is one of the most safety-critical and widely distributed mechanical equipment in nuclear power installations. However, the electric gate valve's extended service in nuclear installations causes aging and degradation induced by crack propagation and leakages. Hence, it is necessary to develop a robust RUL prediction method to evaluate its operating state. Although the particle filter(PF) algorithm and its variants can deal with this nonlinear problem effectively, they suffer from severe particle degeneracy and depletion, which leads to its sub-optimal performance. In this study, we combined the whale algorithm with regularized particle filtering(RPF) to rationalize the particle distribution before resampling, so as to solve the problem of particle degradation, and for valve RUL prediction. The valve's crack propagation is studied using the RPF approach, which takes the Paris Law as a condition function. The crack growth is observed and updated using the root-mean-square (RMS) signal collected from the acoustic emission sensor. At the same time, the proposed method is compared with other optimization algorithms, such as particle swarm optimization algorithm, and verified by the realistic valve aging experimental data. The conclusion shows that the proposed method can effectively predict and analyze the typical valve degradation patterns.

경량형 임베디드 프로세서를 위한 라이다 거리 기반 클러스터링 기법을 활용한 의미론적 물체 인식 (Semantic Object Detection based on LiDAR Distance-based Clustering Techniques for Lightweight Embedded Processors)

  • 정동규;박대진
    • 한국정보통신학회논문지
    • /
    • 제26권10호
    • /
    • pp.1453-1461
    • /
    • 2022
  • 자율주행차량에서 LiDAR와 같은 3D 데이터 센서를 사용한 주변 물체인식 알고리즘의 정확도는 많은 연구를 통해 상승하고 있으나 그에 따라 높은 성능의 하드웨어와 복잡한 구조를 요구하게 되었다. 이러한 물체인식 알고리즘은 주행 중 많은 프로세서를 수행하고 관리해야 하는 자율주행차량의 메인 프로세서에 큰 부하로 작용한다. 이러한 부하를 감소시킴과 동시에 3D 센서 데이터의 장점을 활용하기 위하여, 3D 센서 데이터에서 물리적 특성을 추출하고 이를 이용하여 생성한 ROI를 이용하여 2D 데이터 기반 인식을 제안한다. 기본 이미지에서 밝기 값을 50% 감소시킨 환경에서 기존 2D 기반 모델 대비 5.3% 높은 정확도와 28.57% 감소한 수행 시간을 보였다. 기본 이미지에서 3D 기반 모델 대비 2.46% 낮은 정확도를 가지는 대신 6.25% 감소한 수행 시간을 가진다.

A Review on Advanced Methodologies to Identify the Breast Cancer Classification using the Deep Learning Techniques

  • Bandaru, Satish Babu;Babu, G. Rama Mohan
    • International Journal of Computer Science & Network Security
    • /
    • 제22권4호
    • /
    • pp.420-426
    • /
    • 2022
  • Breast cancer is among the cancers that may be healed as the disease diagnosed at early times before it is distributed through all the areas of the body. The Automatic Analysis of Diagnostic Tests (AAT) is an automated assistance for physicians that can deliver reliable findings to analyze the critically endangered diseases. Deep learning, a family of machine learning methods, has grown at an astonishing pace in recent years. It is used to search and render diagnoses in fields from banking to medicine to machine learning. We attempt to create a deep learning algorithm that can reliably diagnose the breast cancer in the mammogram. We want the algorithm to identify it as cancer, or this image is not cancer, allowing use of a full testing dataset of either strong clinical annotations in training data or the cancer status only, in which a few images of either cancers or noncancer were annotated. Even with this technique, the photographs would be annotated with the condition; an optional portion of the annotated image will then act as the mark. The final stage of the suggested system doesn't need any based labels to be accessible during model training. Furthermore, the results of the review process suggest that deep learning approaches have surpassed the extent of the level of state-of-of-the-the-the-art in tumor identification, feature extraction, and classification. in these three ways, the paper explains why learning algorithms were applied: train the network from scratch, transplanting certain deep learning concepts and constraints into a network, and (another way) reducing the amount of parameters in the trained nets, are two functions that help expand the scope of the networks. Researchers in economically developing countries have applied deep learning imaging devices to cancer detection; on the other hand, cancer chances have gone through the roof in Africa. Convolutional Neural Network (CNN) is a sort of deep learning that can aid you with a variety of other activities, such as speech recognition, image recognition, and classification. To accomplish this goal in this article, we will use CNN to categorize and identify breast cancer photographs from the available databases from the US Centers for Disease Control and Prevention.

프랙티컬 비잔틴 장애 허용 기반 블록체인의 확장성과 내결함성 평가 및 비교분석 (Evaluation and Comparative Analysis of Scalability and Fault Tolerance for Practical Byzantine Fault Tolerant based Blockchain)

  • 이은영;김남령;한채림;이일구
    • 한국정보통신학회논문지
    • /
    • 제26권2호
    • /
    • pp.271-277
    • /
    • 2022
  • PBFT(Practical Byzantine Fault Tolerant)는 분산 네트워크 환경에서 비의도적·의도적 결함을 해결하여 합의를 달성할 수 있는 합의 알고리즘으로 높은 성능과 절대적 최종성을 보장할 수 있다. 하지만 합의 과정에서 반복적으로 발생하는 메시지 브로드캐스팅으로 인해 네트워크의 규모가 증가할수록 네트워크 부하도 커진다. PBFT 알고리즘의 특성상 소규모·프라이빗 블록체인에는 적합하지만, 대규모·퍼블릭 블록체인에 적용하기엔 한계가 있다. PBFT는 블록체인 네트워크의 성능에 영향을 끼치기 때문에 산업에서는 PBFT가 제품 및 서비스에 적합한지 테스트할 수 있어야 하며, 학계에서는 PBFT 성능 향상 연구를 위한 통일된 평가지표와 평가 기술이 필요하다. 본 논문에서는 PBFT 계열 합의 알고리즘을 평가할 수 있는 정량적 지표와 평가 프레임워크에 대해 연구한다. 또한 제안한 PBFT 평가 프레임워크를 사용하여 PBFT의 처리량, 지연시간, 내결함성을 평가한다.

Comparison of soil erosion simulation between empirical and physics-based models

  • Yeon, Min Ho;Kim, Seong Won;Jung, Sung Ho;Lee, Gi Ha
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.172-172
    • /
    • 2020
  • In recent years, soil erosion has come to be regarded as an essential environmental problem in human life. Soil erosion causes various on- and off-site problems such as ecosystem destruction, decreased agricultural productivity, increased riverbed deposition, and deterioration of water quality in streams. To solve these problems caused by soil erosion, it is necessary to quantify where, when, how much soil erosion occurs. Empirical erosion models such as the Universal Soil Loss Equation (USLE) family models have been widely used to make spatially distributed soil erosion vulnerability maps. Even if the models detect vulnerable sites relatively well by utilizing big data related to climate, geography, geology, land use, etc. within study domains, they do not adequately describe the physical process of soil erosion on the ground surface caused by rainfall or overland flow. In other words, such models remain powerful tools to distinguish erosion-prone areas at the macro scale but physics-based models are necessary to better analyze soil erosion and deposition and eroded particle transport. In this study, the physics-based Surface Soil Erosion Model (SSEM) was upgraded based on field survey information to produce sediment yield at the watershed scale. The modified model (hereafter MoSE) adopted new algorithms on rainfall kinematic energy and surface flow transport capacity to simulate soil erosion more reliably. For model validation, we applied the model to the Doam dam watershed in Gangwon-do and compared the simulation results with the USLE outputs. The results showed that the revised physics-based soil erosion model provided more improved and reliable simulation results than the USLE in terms of the spatial distribution of soil erosion and deposition.

  • PDF

안전한 센서 네트워크를 위한 스트림 암호의 성능 비교 분석 (Performance Analysis and Comparison of Stream Ciphers for Secure Sensor Networks)

  • 윤민;나형준;이문규;박근수
    • 정보보호학회논문지
    • /
    • 제18권5호
    • /
    • pp.3-16
    • /
    • 2008
  • 무선 센서 네트워크는 센서 노드 또는 모트(mote)라 불리는 소형 장치들로 이루어진 무선 네트워크이다. 최근 센서 네트워크에 대한 연구가 활발한 가운데 센서 네트워크에서의 보안에 관한 연구 또한 활발히 진행되고 있다. 센서 노드 및 센서 네트워크 상의 정보를 안전하게 저장, 전송하기 위해서는 암호 알고리즘의 구현이 필요하며, 이 암호 알고리즘들은 센서 노드의 한정된 자원을 효과적으로 활용할 수 있도록 효율적인 구현이 필수적이다. 센서 노드 상에서 이용될 수 있는 암호로는 TinyECC 등의 공개키 암호와 AES와 같은 표준 블록 암호가 있으나, 스트림 암호는 최근에서야 eSTREAM 프로젝트에서 표준화가 완료되어 아직 센서 노드상에서 사용 가능성이 명확하지 않은 실정이다. 이에 본 논문에서는 eSTREAM의 2단계와 3단계에 채택되었던 10개 소프트웨어 기반 암호들 중 9개의 암호들을 MicaZ 모트 상에 구현하여 성능을 비교하고, 특히 최종적으로 eSTREAM에 채택된 SOSEMANUK, Salsa20, Rabbit을 포함한 6개 암호에 대해서는 MicaZ에 적합하도록 최적화하였다. 또한 참조 구현으로써 하드웨어용 스트림 암호 및 AES-CFB에 대한 실험 결과도 제시한다. 본 논문의 실험에 따르면, 대부분의 스트림 암호가 약 31Kbps - 406Kbps의 암호화 성능을 보임으로써 센서 노드에서 사용하기에 큰 무리가 없음을 확인할 수 있었다. 특히 최종적으로 채택된 SOSEMANUK, Salsa20, Rabbit의 경우 센서 노드에 적합한 128바이트 크기의 작은 패킷의 암호화에서 각각 406Kbps, 176Kbps, 121Kbps의 속도를 보여주고, 70KB, 14KB, 22KB의 ROM및 2811B, 799B, 755B의 RAM을 사용함으로써, 106Kbps의 속도를 보여준 소프트웨어 기반 AES에 비해 우수한 성능을 보임을 알 수 있었다.