• Title/Summary/Keyword: Distributed Wireless Systems

Search Result 265, Processing Time 0.026 seconds

Inter-cell DCA Algorithm for Downlink Wireless Communication Systems (하향링크 무선 통신 시스템에서의 Inter-cell DCA 알고리즘)

  • Kim, Hyo-Su;Kim, Dong-Hoi;Park, Seung-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.7A
    • /
    • pp.693-701
    • /
    • 2008
  • In OFDMA (Orthogonal Frequency Division Multiple Access) system that frequency reuse factor is 1, as the same channels in the neighborhood cells creates inter-cell co-channel interference which provides a resource underutilization problem, channel allocation schemes to minimize inter-cell interference have been studied. This paper proposes a new CNIR (Carrier to Noise and Interference Ratio)-based distributed Inter-cell DCA (Dynamic Channel Allocation) algorithm in the OFDMA environment with frequency reuse factor of 1. When a channel allocation is requested, if there is not a free channel in home cell or the available free channels in home cell do not satisfy a required threshold value, the proposed Inter-cell DCA algorithm finds CNIR values of available free channels in the neighborhood cells and then allocates a free channel with maximum CNIR value. Through the simulation results, we find that the proposed scheme decreases both new call block rate and forced termination rate due to new call generation at the same time because it increases channel allocation probability.

FER Performance Evaluation and Enhancement of IEEE 802.11 a/g/p WLAN over Multipath Fading Channels in GNU Radio and USRP N200 Environment

  • Alam, Muhammad Morshed;Islam, Mohammad Rakibul;Arafat, Muhammad Yeasir;Ahmed, Feroz
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.178-203
    • /
    • 2018
  • In this paper, authors have been evaluated the Frame Error Rate (FER) performance of IEEE 802.11 a/g/p standard 5 GHz frequency band WLAN over Rayleigh and Rician distributed fading channels in presence of Additive White Gaussian Noise (AWGN). Orthogonal Frequency Division Multiplexing (OFDM) based transceiver is implemented by using real-time signal processing frameworks (IEEE 802.11 Blocks) in GNU Radio Companion (GRC) and Ettus USRP N200 is used to process the symbol over the wireless radio channel. The FER is calculated for each sub-carrier conventional modulation schemes used by OFDM such as BPSK, QPSK, 16, 64-QAM with different punctuated coding rates. More precise SNR is computed by modifying the SNR calculation process of YANS and NIST error rate model to estimate more accurate FER. Here, real-time signal constellations, OFDM signal spectrums etc. are also observed to find the effect of multipath propagation of signals through flat and frequency selective fading channels. To reduce the error rate due to the multipath fading effect and Doppler shifting, channel estimation (CE) and equalization techniques such as Least Square (LS) and training based adaptive Least Mean Square (LMS) algorithm are applied in the receiver. The simulation work is practically verified at GRC by turning into a pair of Software Define Radio (SDR) as a simultaneous transceiver.

Proxy-Quorum Based Replication Control Schemes for Mobile Internet Systems (이동형 인터넷 기기를 위한 위임 정족수 기반의 복제데이터 제어 기법)

  • Byun Si-Woo
    • Journal of Internet Computing and Services
    • /
    • v.5 no.1
    • /
    • pp.51-57
    • /
    • 2004
  • Mobile Internet allows users to request critical information and receive swift responses at any places, but mobile users could suffer from unreliable and ill-timed services due to the characteristics of wireless media, One way that reduces possibility of the unsatisfactory services is data replication. Data Replica1ion, however, inevitably induces the overhead of maintaining replica consistency which requires more expensive synchronization mechanism. We propose a new replicated data management scheme in distributed mobile environment, In order to alleviate negative impact of synchronization message overhead in fault-prone mobile Internet environment, we devise a new replication control scheme called proxy quorum consensus (PQC), PQC minimizes the message overhead by coordinating quorum access activities by means of proxy mediated voting (PMV) which exploits reliable proxy hosts instead of unreliable mobile hosts in voting process, We also propose a simulation model to show the performance of PQC. Based on the results of the performance evaluation, we conclude that PQC scheme outperforms the traditional schemes.

  • PDF

Improvement of Pattern Oriented Software Architecture Design Approach with Empirical Design of USN Middleware (USN 미들웨어 설계사례를 통한 패턴지향 아키텍처 설계방법의 개선)

  • Kung, Sang-Hwan
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.11
    • /
    • pp.1-8
    • /
    • 2007
  • The Sensor Network enables many distributed systems to be unmanned and automated by using of diverse sensors as well as wireless communication technologies. One of major enabling technologies for the sensor network is the USN middleware which plays the role of collecting and analyzing of measurements of sensors and controlling of the environments. The paper deals with the fungus cultivating environment based on Sensor Networks. Especially, we focus on the design of USN middleware for the embedded system, and explain how to design software architecture in terms of architectural patterns. In this design process, the improvement of methodology for pattern-oriented architecture design is proposed and the quality attributes for the architecture design is newly classified and suggested for the reference of software architecture design.

Design of an Edge Computing System using a Raspberry Pi Module for Structural Response Measurement (구조물 응답측정을 위한 라즈베리파이를 이용한 엣지 컴퓨팅 시스템 설계)

  • Shin, Yoon-Soo;Kim, Junhee;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.6
    • /
    • pp.375-381
    • /
    • 2019
  • Structural health monitoring to determine structural conditions at an early stage and to efficiently manage the energy requirements of buildings using systems that collects relevant data, is under active investigation. Structural monitoring requires cutting-edge technology in which construction, sensing, and ICT technologies are combined. However, the scope of application is limited because expensive sensors and specialized technical skills are often required. In this study, a Raspberry Pi module, one of the most widely used single board computers, a Lora module that is capable of long-distance communication at low power, and a high-performance accelerometer are used to construct a wireless edge computing system that can monitor building response over an extended time period. In addition, the Raspberry Pi module utilizes an edge computing algorithm, and only meaningful data is obtained from the vast amount of acceleration data acquired in real-time. The raw data acquired using Wi-Fi communication are compared to the Laura data to evaluate the accuracy of the data obtained using the system.

D-ARP Scheme for Full Mesh Routing in Partial BMA Network (제한적 BMA 네트워크에서 Full Mesh 라우팅을 위한 D-ARP 기법)

  • Kim, Moon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.8
    • /
    • pp.1088-1094
    • /
    • 2021
  • This paper proposes a partial BMA (Broadcasting Multiple Access) network structure and D-ARP (Distributed Address Resolution Protocol) method in order to support full mesh routing function in the DAMA (Demand Assigned Multiple Access)-based MF-TDMA (Multi Frequency-Time Division Multiple Access) satellite system. The partial BMA network enables legacy router devices and routing protocols to be adopted in the satellite communication system, and decreases the amount of routing protocol overhead. In addition, we introduce the D-ARP method that help a spoke satellite node acquiring the MAC (Media Access Control) address from remote satellite nodes in none BMA satellite network. The D-ARP method provides the MAC address of remote nodes to each other nodes through the broadcasting-enabled satellite channel. And we lastly evaluate and analysis the network performance of the proposed approach.

A Block-based Uniformly Distributed Random Node Arrangement Method Enabling to Wirelessly Link Neighbor Nodes within the Communication Range in Free 3-Dimensional Network Spaces (장애물이 없는 3차원 네트워크 공간에서 통신 범위 내에 무선 링크가 가능한 블록 기반의 균등 분포 무작위 노드 배치 방법)

  • Lim, DongHyun;Kim, Changhwa
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.10
    • /
    • pp.1404-1415
    • /
    • 2022
  • The 2-dimensional arrangement method of nodes has been used in most of RF (Radio Frequency) based communication network simulations. However, this method is not useful for the an none-obstacle 3-dimensional space networks in which the propagation delay speed in communication is very slow and, moreover, the values of performance factors such as the communication speed and the error rate change on the depth of node. Such a typical example is an underwater communication network. The 2-dimensional arrangement method is also not useful for the RF based network like some WSNs (Wireless Sensor Networks), IBSs (Intelligent Building Systems), or smart homes, in which the distance between nodes is short or some of nodes can be arranged overlapping with their different heights in similar planar location. In such cases, the 2-dimensional network simulation results are highly inaccurate and unbelievable so that they lead to user's erroneous predictions and judgments. For these reasons, in this paper, we propose a method to place uniformly and randomly communication nodes in 3-dimensional network space, making the wireless link with neighbor node possible. In this method, based on the communication rage of the node, blocks are generated to construct the 3-dimensional network and a node per one block is generated and placed within a block area. In this paper, we also introduce an algorithm based on this method and we show the performance results and evaluations on the average time in a node generation and arrangement, and the arrangement time and scatter-plotted visualization time of all nodes according to the number of them. In addition, comparison with previous studies is conducted. As a result of evaluating the performance of the algorithm, it was found that the processing time of the algorithm was proportional to the number of nodes to be created, and the average generation time of one node was between 0.238 and 0.28 us. ultimately, There is no problem even if a simulation network with a large number of nodes is created, so it can be sufficiently introduced at the time of simulation.

Considerations on a Transportation Simulation Design Responding to Future Driving (미래 교통환경 변화에 대응하는 교통 모의실험 모형 설계 방향)

  • Kim, Hyoungsoo;Park, Bumjin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.6
    • /
    • pp.60-68
    • /
    • 2015
  • Recent proliferation of advanced technologies such as wireless communication, mobile, sensor technology and so on has caused significant changes in a traffic environment. Human beings, in particular drivers, as well as roads and vehicles were advanced on information, intelligence and automation thanks to those advanced technologies; Intelligent Transport Systems (ITS) and autonomous vehicles are the results of changes in a traffic environment. This study proposed considerations when designing a simulation model for future transportation environments, which are difficult to predict the change by means of advanced technologies. First of all, approximability, flexibility and scalability were defined as a macroscopic concept for a simulation model design. For actual similarity, calibration is one of the most important steps in simulation, and Physical layer and MAC layer should be considered for the implementation of the communication characteristics. Interface, such as API, for inserting the additional models of future traffic environments should be considered. A flexible design based on compatibility is more important rather than a massive structure with inherent many functions. Distributed computing with optimized H/W and S/W together is required for experimental scale. The results of this study are expected to be used to the design of future traffic simulation.

Apriori Based Big Data Processing System for Improve Sensor Data Throughput in IoT Environments (IoT 환경에서 센서 데이터 처리율 향상을 위한 Apriori 기반 빅데이터 처리 시스템)

  • Song, Jin Su;Kim, Soo Jin;Shin, Young Tae
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.10
    • /
    • pp.277-284
    • /
    • 2021
  • Recently, the smart home environment is expected to be a platform that collects, integrates, and utilizes various data through convergence with wireless information and communication technology. In fact, the number of smart devices with various sensors is increasing inside smart homes. The amount of data that needs to be processed by the increased number of smart devices is also increasing, and big data processing systems are actively being introduced to handle it effectively. However, traditional big data processing systems have all requests directed to cluster drivers before they are allocated to distributed nodes, leading to reduced cluster-wide performance sharing as cluster drivers managing segmentation tasks become bottlenecks. In particular, there is a greater delay rate on smart home devices that constantly request small data processing. Thus, in this paper, we design a Apriori-based big data system for effective data processing in smart home environments where frequent requests occur at the same time. According to the performance evaluation results of the proposed system, the data processing time was reduced by up to 38.6% from at least 19.2% compared to the existing system. The reason for this result is related to the type of data being measured. Because the amount of data collected in a smart home environment is large, the use of cache servers plays a major role in data processing, and association analysis with Apriori algorithms stores highly relevant sensor data in the cache.

Performance Analysis of TCAM-based Jumping Window Algorithm for Snort 2.9.0 (Snort 2.9.0 환경을 위한 TCAM 기반 점핑 윈도우 알고리즘의 성능 분석)

  • Lee, Sung-Yun;Ryu, Ki-Yeol
    • Journal of Internet Computing and Services
    • /
    • v.13 no.2
    • /
    • pp.41-49
    • /
    • 2012
  • Wireless network support and extended mobile network environment with exponential growth of smart phone users allow us to utilize the network anytime or anywhere. Malicious attacks such as distributed DOS, internet worm, e-mail virus and so on through high-speed networks increase and the number of patterns is dramatically increasing accordingly by increasing network traffic due to this internet technology development. To detect the patterns in intrusion detection systems, an existing research proposed an efficient algorithm called the jumping window algorithm and analyzed approximately 2,000 patterns in Snort 2.1.0, the most famous intrusion detection system. using the algorithm. However, it is inappropriate from the number of TCAM lookups and TCAM memory efficiency to use the result proposed in the research in current environment (Snort 2.9.0) that has longer patterns and a lot of patterns because the jumping window algorithm is affected by the number of patterns and pattern length. In this paper, we simulate the number of TCAM lookups and the required TCAM size in the jumping window with approximately 8,100 patterns from Snort-2.9.0 rules, and then analyse the simulation result. While Snort 2.1.0 requires 16-byte window and 9Mb TCAM size to show the most effective performance as proposed in the previous research, in this paper we suggest 16-byte window and 4 18Mb-TCAMs which are cascaded in Snort 2.9.0 environment.