• 제목/요약/키워드: Distributed Parallel Computing

검색결과 157건 처리시간 0.021초

성능 주도의 UI-Mashup 아키텍처의 설계 및 구현 (Design and Implementation of the Performance Driven UI-Mashup Architecture)

  • 조동일
    • 인터넷정보학회논문지
    • /
    • 제15권1호
    • /
    • pp.45-53
    • /
    • 2014
  • UI-Mashup은 웹 응용프로그램 개발의 최신 경향 중 하나로 인터넷 상에 분산된 다양한 콘텐츠를 조합하여 가치를 추가해 서비스하는 방안으로 널리 사용되고 있다. 현재까지 UI-Mashup 관련 연구는 동적 서비스 조합에 초점이 맞추어져 있고 급변하는 웹 표준에 적응하지 못하여 최종 사용자 입장에서 UI-Mashup은 느리고 불편하며 보안에 취약한 서비스로 인식되고 있다. 본 연구에서는 UI-Mashup의 성능 향상을 위한 아키텍처를 제안한다. 제안한 아키텍처는 빠른 서비스 제공과 보안 강화를 위해 UI조각을 서버에서 병렬로 수집하고 매쉬업된 UI의 레이아웃과 UI조각들을 별도의 전송 채널을 통해 클라이언트로 전송하여 빠른 반응시간과 응답시간을 제공한다. 본 연구에서는 제안한 아키텍처를 실증적으로 검증하기 위해 구현하였으며 성능테스트를 진행하였다. 성능테스트 결과 제안한 아키텍처는 기존 UI-Mashup 기법에 비해 2 ~ 3배 빠른 응답시간을 기록하였고, 4배이상의 처리량을 보였다.

맵리듀스를 이용한 다중 중심점 집합 기반의 효율적인 클러스터링 방법 (An Efficient Clustering Method based on Multi Centroid Set using MapReduce)

  • 강성민;이석주;민준기
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제21권7호
    • /
    • pp.494-499
    • /
    • 2015
  • 데이터 사이즈가 증가함에 따라서 대용량 데이터를 분석하여 데이터의 특성을 파악하는 것이 매우 중요해졌다. 본 논문에서는 분산 병렬 처리 프레임워크인 맵리듀스를 활용한 k-Means 클러스터링 기반의 효과적인 클러스터링 기법인 MCSK-Means (Multi centroid set k-Means)알고리즘을 제안한다. k-Means 알고리즘은 임의로 정해지는 k개의 초기 중심점들의 위치에 따라서 클러스터링 결과의 정확도가 많은 영향을 받는 문제점을 가지고 있다. 이러한 문제를 해결하기 위하여, 본 논문에서 제안하는 MCSK-Means 알고리즘은 k개의 중심점들로 이루어진 m개의 중심점 집합을 사용하여 임의로 생성되는 초기 중심점의 의존도를 줄였다. 또한, 클러스터링 단계를 거친 m개의 중심점 집합들에 속한 중심점들에 대하여 직접 계층 클러스터링 알고리즘을 적용하여 k개의 클러스터 중심점들을 생성하였다. 본 논문에서는 MCSK-Means 알고리즘을 맵리듀스 프레임워크 환경에서 개발하여 대용량 데이터를 효율적으로 처리할 수 있도록 하였다.

컴포넌트기반 체계모의환경(AddSIM)에서 실행하기 위한 DEVS 모델 변환 방법 (A Converting Method to Simulate DEVS Models on AddSIM)

  • 김도형;오현식;박주혜;박삼준
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제21권7호
    • /
    • pp.488-493
    • /
    • 2015
  • 컴포넌트기반 체계모의환경(AddSIM)은 고해상도 공학급 무기체계를 사용하여 체계의 성능 및 효과도를 예측 분석하기 위해 개발된 무기체계 통합 모의환경이다. AddSIM을 이용한 고해상도 교전 모의 분석을 위해서는 연속시스템으로 표현되는 무기체계 공학급 모델은 물론, 지휘 통제, 네트워크 제어 모델과 같이 DEVS 형식론으로 기술된 이산사건시스템 모델을 복합적으로 사용해야 한다. 본 논문에서는 DEVS 모델과 AddSIM 플레이어 모델의 함수 간 관계 매핑(mapping)을 통해 AddSIM에서 실행 가능한 DEVS 모델 변환방법을 제시한다. 제안한 방법은 우선, 계층적으로 구성된 DEVS 모델을 단일 계층으로 변환하고, DEVS의 네 가지 함수(외부천이, 내부천이, 출력, 시간진행함수)를 AddSIM 플레이어 함수로의 변환을 주요 내용으로 한다.

대용량 기후모델자료를 위한 통합관리시스템 구축 (Development of Climate & Environment Data System for Big Data from Climate Model Simulations)

  • 이재희;성현민;원상호;이조한;변영화
    • 대기
    • /
    • 제29권1호
    • /
    • pp.75-86
    • /
    • 2019
  • In this paper, we introduce a novel Climate & Environment Database System (CEDS). The CEDS is developed by the National Institute of Meteorological Sciences (NIMS) to provide easy and efficient user interfaces and storage management of climate model data, so improves work efficiency. In uploading the data/files, the CEDS provides an option to automatically operate the international standard data conversion (CMORization) and the quality assurance (QA) processes for submission of CMIP6 variable data. This option increases the system performance, removes the user mistakes, and increases the level of reliability as it eliminates user operation for the CMORization and QA processes. The uploaded raw files are saved in a NAS storage and the Cassandra database stores the metadata that will be used for efficient data access and storage management. The Metadata is automatically generated when uploading a file, or by the user inputs. With the Metadata, the CEDS supports effective storage management by categorizing data/files. This effective storage management allows easy and fast data access with a higher level of data reliability when requesting with the simple search words by a novice. Moreover, the CEDS supports parallel and distributed computing for increasing overall system performance and balancing the load. This supports the high level of availability as multiple users can use it at the same time with fast system-response. Additionally, it deduplicates redundant data and reduces storage space.

도로 주행환경 분석을 위한 빅데이터 플랫폼 구축 정보기술 인프라 개발 (Development of Information Technology Infrastructures through Construction of Big Data Platform for Road Driving Environment Analysis)

  • 정인택;정규수
    • 한국산학기술학회논문지
    • /
    • 제19권3호
    • /
    • pp.669-678
    • /
    • 2018
  • 본 연구는 차량센싱데이터, 공공데이터 등 다종의 빅데이터를 활용하여 주행환경 분석 플랫폼 구축을 위한 정보기술 인프라를 개발하였다. 정보기술 인프라는 H/W 기술과 S/W 기술로 구분할 수 있다. 먼저, H/W 기술은 빅데이터 분산 처리를 위한 병렬처리 구조의 소형 플랫폼 서버를 개발하였다. 해당 서버는 1대의 마스터 노드와 9대의 슬래이브 노드로 구성하였으며, H/W 결함에 따른 데이터 유실을 막기 위하여 클러스터 기반 H/W 구성으로 설계하였다. 다음으로 S/W 기술은 빅데이터 수집 및 저장, 가공 및 분석, 정보시각화를 위한 각각의 프로그램을 개발하였다. 수집 S/W의 경우, 실시간 데이터는 카프카와 플럼으로 비실시간 데이터는 스쿱을 이용하여 수집 인터페이스를 개발하였다. 저장 S/W는 데이터의 활용 용도에 따라 하둡 분산파일시스템과 카산드라 DB로 구분하여 저장하는 인터페이스를 개발하였다. 가공 S/W는 그리드 인덱스 기법을 적용하여 수집데이터의 공간 단위 매칭과 시간간격 보간 및 집계를 위한 프로그램을 개발하였다. 분석 S/W는 개발 알고리즘의 탐재 및 평가, 장래 주행환경 예측모형 개발을 위하여 제플린 노트북 기반의 분석 도구를 개발하였다. 마지막으로 정보시각화 S/W는 다양한 주행환경 정보제공 및 시각화를 위하여 지오서버 기반의 웹 GIS 엔진 프로그램을 개발하였다. 성능평가는 개발서버의 메모리 용량과 코어개수에 따른 연산 테스트를 수행하였으며, 타 기관의 클라우드 컴퓨팅과도 연산성능을 비교하였다. 그 결과, 개발 서버에 대한 최적의 익스큐터 개수, 메모리 용량과 코어 개수를 도출하였으며, 개발 서버는 타 시스템 보다 연산성능이 우수한 것으로 나타났다.

대용량 추론을 위한 분산환경에서의 가정기반진리관리시스템 (Distributed Assumption-Based Truth Maintenance System for Scalable Reasoning)

  • 바트셀렘;박영택
    • 정보과학회 논문지
    • /
    • 제43권10호
    • /
    • pp.1115-1123
    • /
    • 2016
  • 가정기반진리관리 시스템(ATMS)은 추론 시스템의 추론 과정을 저장하고 비단조추론을 지원할 수 있는 도구이다. 또한 의존기반 backtracking을 지원하므로 매우 넓은 공간 탐색 문제를 해결 할 수 있는 강력한 도구이다. 모든 추론 과정을 기록하고, 특정한 컨텍스트에서 지능형시스템의 Belief를 매우 빠르게 확인하고 비단조 추론 문제에 대한 해결책을 효율적으로 제공할 수 있게 한다. 그러나 최근 데이터의 양이 방대해지면서 기존의 단일 머신을 사용하는 경우 문제 해결 프로그램의 대용량의 추론과정을 저장하는 것이 불가능하게 되었다. 대용량 데이터에 대한 문제 해결 과정을 기록하는 것은 많은 연산과 메모리 오버헤드를 야기한다. 이러한 단점을 극복하기 위해 본 논문에서는 Apache Spark 환경에서 functional 및 객체지향 방식 기반의 점진적 컨텍스트 추론을 유지할 수 있는 방법을 제안한다. 이는 가정(Assumption)과 유도과정을 분산 환경에 저장하며, 실체화된 대용량 데이터셋의 변화를 효율적으로 수정가능하게 한다. 또한 ATMS의 Label, Environment를 분산 처리하여 대규모의 추론 과정을 효과적으로 관리할 수 있는 방안을 제시하고 있다. 제안하는 시스템의 성능을 측정하기 위해 5개의 노드로 구성된 클러스터에서 LUBM 데이터셋에 대한 OWL/RDFS 추론을 수행하고, 데이터의 추가, 설명, 제거에 대한 실험을 수행하였다. LUBM2000에 대하여 추론을 수행한 결과 80GB데이터가 추론되었고, ATMS에 적용하여 추가, 설명, 제거에 대하여 수초 내에 처리하는 성능을 보였다.

Hadoop기반의 공개의료정보 빅 데이터 분석을 통한 한국여성암 검진 요인분석 서비스 (Analysis of Factors for Korean Women's Cancer Screening through Hadoop-Based Public Medical Information Big Data Analysis)

  • 박민희;조영복;김소영;박종배;박종혁
    • 한국정보통신학회논문지
    • /
    • 제22권10호
    • /
    • pp.1277-1286
    • /
    • 2018
  • 본 논문에서는 공개의료정보 빅데이터 분석을 위해 클라우드 환경에서 아파치 하둡 기반의 클라우드 환경을 도입하여 컴퓨팅 자원의 유연한 확장성을 제공하고 실제로, 로그데이터가 장기간 축적되거나 급격하게 증가하는 상황에서 스토리지, 메모리 등의 자원을 신속성 있고 유연하게 확장을 할 수 있는 기능을 포함했다. 또한, 축적된 비정형 로그데이터의 실시간 분석이 요구되어질 때 기존의 분석도구의 처리한계를 극복하기 위해 본 시스템은 하둡 (Hadoop) 기반의 분석모듈을 도입함으로써 대용량의 로그데이터를 빠르고 신뢰성 있게 병렬 분산 처리할 수 있는 기능을 제공한다. 빅데이터 분석을 위해 빈도분석과 카이제곱검정을 수행하고 유의 수준 0.05를 기준으로 단변량 로지스틱 회귀분석과 모델별 의미 있는 변수들의 다변량 로지스틱 회귀분석을 시행 하였다. (p<0.05) 의미 있는 변수들을 모델별로 나누어 다변량 로지스틱 회귀 분석한 결과 Model 3으로 갈수록 적합도가 높아졌다.