• Title/Summary/Keyword: Distributed Intelligence Network

Search Result 78, Processing Time 0.027 seconds

Trends in Network and AI Technologies (네트워크와 AI 기술 동향)

  • Kim, Tae Yeon;Ko, Namseok;Yang, Sunhee;Kim, Sun Me
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.5
    • /
    • pp.1-13
    • /
    • 2020
  • Recently, network infrastructure has evolved into a BizTech agile autonomous network to cope with the dynamic changes in the service environment. This survey presents the expectations from two different perspectives of the harmonization of network and artificial intelligence (AI) technologies. First, the paper focuses on the possibilities of AI technology for the autonomous network industry. Subsequently, it discusses how networks can play a role in the evolution of distributed AI technologies.

Validity Analysis of GDSS Technical Support of Distributed Group Decision-Making Process

  • Hong-Cai, Fu;Ping, Zou;Hao-Wen, Zhang
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2007.02a
    • /
    • pp.131-138
    • /
    • 2007
  • Distributed Group Decision Support System (GDSS) is in the stage between exploration and implementation, there is not unified constructing model. As computer software and hardware, network technique develop, especially the development of object-oriented programming, distributed process, and artificial intelligence, this makes it possible the practical and valid implementation of distributed GDSS. With a view of emphasizing and solving process-supporting, this article discusses how to use the key technologies of network, distributed process, artificial intelligence and man-machine mutual interface, to implement more adaptable, more flexible, and more valid GDSS than before.

  • PDF

Distributed AI Learning-based Proof-of-Work Consensus Algorithm (분산 인공지능 학습 기반 작업증명 합의알고리즘)

  • Won-Boo Chae;Jong-Sou Park
    • The Journal of Bigdata
    • /
    • v.7 no.1
    • /
    • pp.1-14
    • /
    • 2022
  • The proof-of-work consensus algorithm used by most blockchains is causing a massive waste of computing resources in the form of mining. A useful proof-of-work consensus algorithm has been studied to reduce the waste of computing resources in proof-of-work, but there are still resource waste and mining centralization problems when creating blocks. In this paper, the problem of resource waste in block generation was solved by replacing the relatively inefficient computation process for block generation with distributed artificial intelligence model learning. In addition, by providing fair rewards to nodes participating in the learning process, nodes with weak computing power were motivated to participate, and performance similar to the existing centralized AI learning method was maintained. To show the validity of the proposed methodology, we implemented a blockchain network capable of distributed AI learning and experimented with reward distribution through resource verification, and compared the results of the existing centralized learning method and the blockchain distributed AI learning method. In addition, as a future study, the thesis was concluded by suggesting problems and development directions that may occur when expanding the blockchain main network and artificial intelligence model.

Artificial Intelligence Applications as a Modern Trend to Achieve Organizational Innovation in Jordanian Commercial Banks

  • Al-HAWAMDEH, Majd Mohammed;AlSHAER, Sawsan A.
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.3
    • /
    • pp.257-263
    • /
    • 2022
  • The objective of this study was to see how artificial intelligence applications affected organizational innovation in Jordanian commercial banks. Both independent and dependent variables were measured in three dimensions: expert systems, neural network systems, and fuzzy logic systems for artificial intelligence applications variable. Product innovation, process innovation, and management innovation for the organizational innovation variable. To achieve study objectives, a questionnaire was developed and distributed to a sample of one hundred fifty-three managers in Jordanian commercial banks, who were selected according to the simple random sampling method. Except for the neural network systems dimension, which comes in at an average level, the study indicated that there is a high level of organizational innovation and artificial intelligence applications. Furthermore, the findings revealed that artificial intelligence applications have a significant impact on organizational innovation in Jordanian commercial banks, with the most important artificial intelligence application being a fuzzy logic system. The study suggested keeping track of technological advancements in the field of artificial intelligence applications and incorporating them into banking operations by benchmarking with the best commercial bank practices and allocating a portion of the budget to technological applications and infrastructure development, as well as balancing between technology use and information security risks to ensure client privacy is protected.

A Distributed Method for Constructing a P2P Overlay Multicast Network using Computational Intelligence (지능적 계산법을 이용한 분산적 P2P 오버레이 멀티케스트 네트워크 구성 기법)

  • Park, Jaesung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.6
    • /
    • pp.95-102
    • /
    • 2012
  • In this paper, we propose a method that can construct efficiently a P2P overlay multicast network composed of many heterogeneous peers in communication bandwidth, processing power and a storage size by selecting a peer in a distributed fashion using an ant-colony theory that is one of the computational intelligence methods. The proposed method considers not only the capacity of a peer but also the number of children peers supported by the peer and the hop distance between a multicast source and the peer when selecting a parent peer of a newly joining node. Thus, an P2P multicast overlay network is constructed efficiently in that the distances between a multicast source and peers are maintained small. In addition, the proposed method works in a distributed fashion in that peers use their local information to find a parent node. Thus, compared to a centralized method where a centralized server maintains and controls the overlay construction process, the proposed method scales well. Through simulations, we show that, by making a few high capacity peers support a lot of low capacity peers, the proposed method can maintain the size of overlay network small even there are a few thousands of peers in the network.

Importance Assessment of Multiple Microgrids Network Based on Modified PageRank Algorithm

  • Yeonwoo LEE
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.2
    • /
    • pp.1-6
    • /
    • 2023
  • This paper presents a comprehensive scheme for assessing the importance of multiple microgrids (MGs) network that includes distributed energy resources (DERs), renewable energy systems (RESs), and energy storage system (ESS) facilities. Due to the uncertainty of severe weather, large-scale cascading failures are inevitable in energy networks. making the assessment of the structural vulnerability of the energy network an attractive research theme. This attention has led to the identification of the importance of measuring energy nodes. In multiple MG networks, the energy nodes are regarded as one MG. This paper presents a modified PageRank algorithm to assess the importance of MGs that include multiple DERs and ESS. With the importance rank order list of the multiple MG networks, the core MG (or node) of power production and consumption can be identified. Identifying such an MG is useful in preventing cascading failures by distributing the concentration on the core node, while increasing the effective link connection of the energy flow and energy trade. This scheme can be applied to identify the most profitable MG in the energy trade market so that the deployment operation of the MG connection can be decided to increase the effectiveness of energy usages. By identifying the important MG nodes in the network, it can help improve the resilience and robustness of the power grid system against large-scale cascading failures and other unexpected events. The proposed algorithm can point out which MG node is important in the MGs power grid network and thus, it could prevent the cascading failure by distributing the important MG node's role to other MG nodes.

Distributed Federated Learning-based Intrusion Detection System for Industrial IoT Networks (산업 IoT 전용 분산 연합 학습 기반 침입 탐지 시스템)

  • Md Mamunur Rashid;Piljoo Choi;Suk-Hwan Lee;Ki-Ryong Kwon
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.151-153
    • /
    • 2023
  • Federated learning (FL)-based network intrusion detection techniques have enormous potential for securing the Industrial Internet of Things (IIoT) cybersecurity. The openness and connection of systems in smart industrial facilities can be targeted and manipulated by malicious actors, which emphasizes the significance of cybersecurity. The conventional centralized technique's drawbacks, including excessive latency, a congested network, and privacy leaks, are all addressed by the FL method. In addition, the rich data enables the training of models while combining private data from numerous participants. This research aims to create an FL-based architecture to improve cybersecurity and intrusion detection in IoT networks. In order to assess the effectiveness of the suggested approach, we have utilized well-known cybersecurity datasets along with centralized and federated machine learning models.

Artificial Intelligence Application using Nutcracker Optimization Algorithm to Enhance Efficiency & Reliability of Power Systems via Optimal Setting and Sizing of Renewable Energy Sources as Distributed Generations in Radial Distribution Systems

  • Nawaf A. AlZahrani;Mohammad Hamza Awedh;Ali M. Rushdi
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.31-44
    • /
    • 2024
  • People have been using more energy in the last years. Several research studies were conducted to develop sustainable energy sources that can produce clean energy to fulfill our energy requirements. Using renewable energy sources helps to decrease the harm to the environment caused by conventional power plants. Choosing the right location and capacity for DG-RESs can greatly impact the performance of Radial Distribution Systems. It is beneficial to have a good and stable electrical power supply with low energy waste and high effectiveness because it improves the performance and reliability of the system. This research investigates the ideal location and size for solar and wind power systems, which are popular methods for producing clean electricity. A new artificial intelligent algorithm called Nutcracker Optimization Algorithm (NOA) is used to find the best solution in two common electrical systems named IEEE 33 and 69 bus systems to examine the improvement in the efficiency & reliability of power system network by reducing power losses, making voltage deviation smaller, and improving voltage stability. Finally, the NOA method is compared with another method called PSO and developed Hybrid Algorithm (NOA+PSO) to validate the proposed algorithm effectiveness and enhancement of both efficiency and reliability aspects.

A Secure Healthcare System Using Holochain in a Distributed Environment

  • Jong-Sub Lee;Seok-Jae Moon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.261-269
    • /
    • 2023
  • We propose to design a Holochain-based security and privacy protection system for resource-constrained IoT healthcare systems. Through analysis and performance evaluation, the proposed system confirmed that these characteristics operate effectively in the IoT healthcare environment. The system proposed in this paper consists of four main layers aimed at secure collection, transmission, storage, and processing of important medical data in IoT healthcare environments. The first PERCEPTION layer consists of various IoT devices, such as wearable devices, sensors, and other medical devices. These devices collect patient health data and pass it on to the network layer. The second network connectivity layer assigns an IP address to the collected data and ensures that the data is transmitted reliably over the network. Transmission takes place via standardized protocols, which ensures data reliability and availability. The third distributed cloud layer is a distributed data storage based on Holochain that stores important medical information collected from resource-limited IoT devices. This layer manages data integrity and access control, and allows users to share data securely. Finally, the fourth application layer provides useful information and services to end users, patients and healthcare professionals. The structuring and presentation of data and interaction between applications are managed at this layer. This structure aims to provide security, privacy, and resource efficiency suitable for IoT healthcare systems, in contrast to traditional centralized or blockchain-based systems. We design and propose a Holochain-based security and privacy protection system through a better IoT healthcare system.

A Software Defined Networking Approach to Improve the Energy Efficiency of Mobile Wireless Sensor Networks

  • Aparicio, Joaquin;Echevarria, Juan Jose;Legarda, Jon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.6
    • /
    • pp.2848-2869
    • /
    • 2017
  • Mobile Wireless Sensor Networks (MWSN) are usually constrained in energy supply, which makes energy efficiency a key factor to extend the network lifetime. The management of the network topology has been widely used as a mechanism to enhance the lifetime of wireless sensor networks (WSN), and this work presents an alternative to this. Software Defined Networking (SDN) is a well-known technology in data center applications that separates the data and control planes during the network management. This paper proposes a solution based on SDN that optimizes the energy use in MWSN. The network intelligence is placed in a controller that can be accessed through different controller gateways within a MWSN. This network intelligence runs a Topology Control (TC) mechanism to build a backbone of coordinator nodes. Therefore, nodes only need to perform forwarding tasks, they reduce message retransmissions and CPU usage. This results in an improvement of the network lifetime. The performance of the proposed solution is evaluated and compared with a distributed approach using the OMNeT++ simulation framework. Results show that the network lifetime increases when 2 or more controller gateways are used.