• Title/Summary/Keyword: Distributed Inference

Search Result 78, Processing Time 0.027 seconds

PDC Intelligent control-based theory for structure system dynamics

  • Chen, Tim;Lohnash, Megan;Owens, Emmanuel;Chen, C.Y.J.
    • Smart Structures and Systems
    • /
    • v.25 no.4
    • /
    • pp.401-408
    • /
    • 2020
  • This paper deals with the problem of global stabilization for a class of nonlinear control systems. An effective approach is proposed for controlling the system interaction of structures through a combination of parallel distributed compensation (PDC) intelligent controllers and fuzzy observers. An efficient approximate inference algorithm using expectation propagation and a Bayesian additive model is developed which allows us to predict the total number of control systems, thereby contributing to a more adaptive trajectory for the closed-loop system and that of its corresponding model. The closed-loop fuzzy system can be made as close as desired, so that the behavior of the closed-loop system can be rigorously predicted by establishing that of the closed-loop fuzzy system.

Fuzzy control for geometrically nonlinear vibration of piezoelectric flexible plates

  • Xu, Yalan;Chen, Jianjun
    • Structural Engineering and Mechanics
    • /
    • v.43 no.2
    • /
    • pp.163-177
    • /
    • 2012
  • This paper presents a LMI(linear matrix inequality)-based fuzzy approach of modeling and active vibration control of geometrically nonlinear flexible plates with piezoelectric materials as actuators and sensors. The large-amplitude vibration characteristics and dynamic partial differential equation of a piezoelectric flexible rectangular thin plate structure are obtained by using generalized Fourier series and numerical integral. Takagi-Sugeno (T-S) fuzzy model is employed to approximate the nonlinear structural system, which combines the fuzzy inference rule with the local linear state space model. A robust fuzzy dynamic output feedback control law based on the T-S fuzzy model is designed by the parallel distributed compensation (PDC) technique, and stability analysis and disturbance rejection problems are guaranteed by LMI method. The simulation result shows that the fuzzy dynamic output feedback controller based on a two-rule T-S fuzzy model performs well, and the vibration of plate structure with geometrical nonlinearity is suppressed, which is less complex in computation and can be practically implemented.

Bio-inspired self powered nervous system for civil structures

  • Shoureshi, Rahmat A.;Lim, Sun W.
    • Smart Structures and Systems
    • /
    • v.5 no.2
    • /
    • pp.139-152
    • /
    • 2009
  • Globally, civil infrastructures are deteriorating at an alarming rate caused by overuse, overloading, aging, damage or failure due to natural or man-made hazards. With such a vast network of deteriorating infrastructure, there is a growing interest in continuous monitoring technologies. In order to provide a true distributed sensor and control system for civil structures, we are developing a Structural Nervous System that mimics key attributes of a human nervous system. This nervous system is made up of building blocks that are designed based on mechanoreceptors as a fundamentally new approach for the development of a structural health monitoring and diagnostic system that utilizes the recently developed piezo-fibers capable of sensing and actuation. In particular, our research has been focused on producing a sensory nervous system for civil structures by using piezo-fibers as sensory receptors, nerve fibers, neuronal pools, and spinocervical tract to the nodal and central processing units. This paper presents up to date results of our research, including the design and analysis of the structural nervous system.

Discrete Event Simulation with Embedded Distributed Expert System: Application to Manufacturing Process Monitoring and Diagnosis (분산 전문가 시스템의 기능을 갖는 이산사건 시뮬레이션: 제조 공정 오류 감지와 진단에의 적용)

  • 조대호
    • Journal of the Korea Society for Simulation
    • /
    • v.7 no.2
    • /
    • pp.137-152
    • /
    • 1998
  • One of the components that constitute the simulation models is the state variables whose values are determined by the time related simulation process. Embedding rule-based expert systems into the simulation models should provide a systematic way of handling these time-dependent variables without distracting the essential problem solving capabilities of the expert systems which are well suited for expressing the decision making function of complex cases. The expert system, however, is inefficient in dealing with the time elapsing characteristics of target system compare to the simulation models. To solve the problem, this paper provides an interruptible inference engine whose inferencing process can be interrupted when the variables' value, which are used as the parameters of the rules, are not yet determined due to the time dependent nature of the state variables. The process is resumed when the variables are ready. The elapse of time is calculated by time-advance function of the simulation model to which the expert system has been embedded. The example modeling shown exploits the embedded interruptible inferencing capability for the controlling and monitoring of metal grating process.

  • PDF

An Application of RETE Algorithm for Improving the Inference Performance in the Coordination Architecture (연동 구조 내의 추론 성능 향상을 위한 RETE 알고리즘의 적용)

  • 서희석
    • Journal of the Korea Computer Industry Society
    • /
    • v.4 no.12
    • /
    • pp.965-974
    • /
    • 2003
  • Today's network consists of a large number of routers and servers running a variety of applications. In this paper, we have designed and constructed the general simulation environment of network security model composed of multiple IDSs agent and a firewall agent which coordinate by CNP (Contract Net Protocol). The CNP, the methodology for efficient integration of computer systems on heterogeneous environment such as distributed systems, is essentially a collection of agents, which cooperate to resolve a problem. Command console in the CNP is a manager who controls the execution of agents or a contractee, who performs intrusion detection. In the knowledge-based network security model, each model of simulation environment is hierarchically designed by DEVS (Discrete Event system Specification) formalism. The purpose of this simulation is the application of rete pattern-matching algorithm speeding up the inference cycle phases of the intrusion detection expert system. we evaluate the characteristics and performance of CNP architecture with rete pattern-matching algorithm.

  • PDF

A Bayesian Inference Model for Landmarks Detection on Mobile Devices (모바일 디바이스 상에서의 특이성 탐지를 위한 베이지안 추론 모델)

  • Hwang, Keum-Sung;Cho, Sung-Bae;Lea, Jong-Ho
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.1
    • /
    • pp.35-45
    • /
    • 2007
  • The log data collected from mobile devices contains diverse meaningful and practical personal information. However, this information is usually ignored because of its limitation of memory capacity, computation power and analysis. We propose a novel method that detects landmarks of meaningful information for users by analyzing the log data in distributed modules to overcome the problems of mobile environment. The proposed method adopts Bayesian probabilistic approach to enhance the inference accuracy under the uncertain environments. The new cooperative modularization technique divides Bayesian network into modules to compute efficiently with limited resources. Experiments with artificial data and real data indicate that the result with artificial data is amount to about 84% precision rate and about 76% recall rate, and that including partial matching with real data is about 89% hitting rate.

A New framework for IP Traceback : Inference of Logical Topology by Measuring Packet Losses (IP 역추적을 위한 새로운 접근 : 패킷 손실 기반의 논리적 전송 경로 추정)

  • 이준엽;이승형;양훈기;고재영;강철오;정주영
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.3
    • /
    • pp.39-47
    • /
    • 2002
  • This paper deals with study of a new framework for the traceback of distributed DoS(Denial of Service) attacks in the Internet, in which many sources flood "spoofed" IP packets towards a single victim. In our scheme, the destination host traces those anonymous packets' losses, and infers the logical end-to-end paths back towards the sources. This method is based on the fact that there is a strong correlation between packet losses when those packets traverse along a same route, and the simulation results show high probabilities of detecting the topology under a certain condition. Compared with previous approaches, our scheme has a number of distinct features: It can be performed in realtime or non-realtime, without any supports of routers or ISPs. Our results may be applied to the inference of physical topology and to support previous approaches.pproaches.

Large Scale Incremental Reasoning using SWRL Rules in a Distributed Framework (분산 처리 환경에서 SWRL 규칙을 이용한 대용량 점증적 추론 방법)

  • Lee, Wan-Gon;Bang, Sung-Hyuk;Park, Young-Tack
    • Journal of KIISE
    • /
    • v.44 no.4
    • /
    • pp.383-391
    • /
    • 2017
  • As we enter a new era of Big Data, the amount of semantic data has rapidly increased. In order to derive meaningful information from this large semantic data, studies that utilize the SWRL(Semantic Web Rule Language) are being actively conducted. SWRL rules are based on data extracted from a user's empirical knowledge. However, conventional reasoning systems developed on single machines cannot process large scale data. Similarly, multi-node based reasoning systems have performance degradation problems due to network shuffling. Therefore, this paper overcomes the limitations of existing systems and proposes more efficient distributed inference methods. It also introduces data partitioning strategies to minimize network shuffling. In addition, it describes a method for optimizing the incremental reasoning process through data selection and determining the rule order. In order to evaluate the proposed methods, the experiments were conducted using WiseKB consisting of 200 million triples with 83 user defined rules and the overall reasoning task was completed in 32.7 minutes. Also, the experiment results using LUBM bench datasets showed that our approach could perform reasoning twice as fast as MapReduce based reasoning systems.

Achieving and Reasoning about Common Beliefs based on Social Networking Services: on the Group Chatting Model of KakaoTalk (소셜 네트워크에서 공통믿음의 형성과 추론: 카카오톡 채팅방을 중심으로)

  • Kim, Koono
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.1
    • /
    • pp.7-14
    • /
    • 2017
  • Theoretically, it is known that common beliefs and/or common knowledge cannot be attained in asynchronously distributed multiagent environments, however, it show that some propositions with deadlines can be attained as common beliefs among a set of fully trusted agents even when they communicate to each other asynchronously. Generally, in the multiagent environment, the attainment of common beliefs is approached as a problem of communication, and for the common beliefs paradox that the common beliefs is not attained on a system without communication time restriction is applied to loose coarser granularity and it prove that forming common beliefs is possible by relaxing necessary requirements through the KakaoTalk chatting model. I also experimented with the reasoning function that confirms the common beliefs by inquiring about the common belief generated by implementing the inference function in each agent of the KakaoTalk chatting model. Through utilizing metalogic programming, a formalization of the presentation and reasoning of common beliefs has been achieved, and the group chatting model of KakaoTalk was adopted in experiments to show that common beliefs can be formed among distributed agents using asynchronous communication.

An Approach of Scalable SHIF Ontology Reasoning using Spark Framework (Spark 프레임워크를 적용한 대용량 SHIF 온톨로지 추론 기법)

  • Kim, Je-Min;Park, Young-Tack
    • Journal of KIISE
    • /
    • v.42 no.10
    • /
    • pp.1195-1206
    • /
    • 2015
  • For the management of a knowledge system, systems that automatically infer and manage scalable knowledge are required. Most of these systems use ontologies in order to exchange knowledge between machines and infer new knowledge. Therefore, approaches are needed that infer new knowledge for scalable ontology. In this paper, we propose an approach to perform rule based reasoning for scalable SHIF ontologies in a spark framework which works similarly to MapReduce in distributed memories on a cluster. For performing efficient reasoning in distributed memories, we focus on three areas. First, we define a data structure for splitting scalable ontology triples into small sets according to each reasoning rule and loading these triple sets in distributed memories. Second, a rule execution order and iteration conditions based on dependencies and correlations among the SHIF rules are defined. Finally, we explain the operations that are adapted to execute the rules, and these operations are based on reasoning algorithms. In order to evaluate the suggested methods in this paper, we perform an experiment with WebPie, which is a representative ontology reasoner based on a cluster using the LUBM set, which is formal data used to evaluate ontology inference and search speed. Consequently, the proposed approach shows that the throughput is improved by 28,400% (157k/sec) from WebPie(553/sec) with LUBM.