• 제목/요약/키워드: Distributed Generator

검색결과 204건 처리시간 0.026초

오픈 와인딩 머신을 이용한 계통 연계형 분산 발전 시스템의 제어 (Control of an Open Winding Machine in a Grid-Connected Distributed Generation System)

  • 곽무신;설승기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.83-86
    • /
    • 2006
  • A grid-connected distributed generation system which consists of engine generator, dc link with multiple energy sources and inverter is proposed. All six of the stator leads of the generator, which is a surface mount permanent magnet machine, are brought out to the terminal of the generator. Three leads are connected to the inverter and the others are connected to the utility grid. In this proposed system the power from the engine-generator and the power from dc link can be controlled simultaneously by only one three-phase power converter. A control algorithm for the system is developed and verified by experiment results.

  • PDF

Optimal Design of a Distributed Winding Type Axial Flux Permanent Magnet Synchronous Generator

  • You, Yong-Min;Lin, Hai;Kwon, Byung-Il
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권1호
    • /
    • pp.69-74
    • /
    • 2012
  • This paper presents a distributed winding type axial flux permanent magnet synchronous generator (AFPMSG) with reduced the total harmonic distortion (THD), suitable for wind turbine generation systems. Although the THD of the proposed distributed winding type is more reduced than the concentrated winding type, the unbalance of the phase back EMF occurs. To improve the unbalance of the phase back EMF and the output power of the distributed winding type AFPMSG, the Kriging based on the latin hypercube sampling (LHS) is utilized. Finally, these optimization results are confirmed by experimental results. As a result, the unbalance of the phase back EMF and the output power of the distributed winding type AFPMSG were improved while maintaining the total harmonic distortion (THD) and the average phase back EMF.

Coordinated Voltage and Reactive Power Control Strategy with Distributed Generator for Improving the Operational Efficiency

  • Jeong, Ki-Seok;Lee, Hyun-Chul;Baek, Young-Sik;Park, Ji-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권6호
    • /
    • pp.1261-1268
    • /
    • 2013
  • This study proposes a voltage and reactive coordinative control strategy with distributed generator (DG) in a distribution power system. The aim is to determine the optimum dispatch schedules for an on-load tap changer (OLTC), distributed generator settings and all shunt capacitor switching on the load and DG generation profile in a day. The proposed method minimizes the real power losses and improves the voltage profile using squared deviations of bus voltages. The results indicate that the proposed method reduces the real losses and voltage fluctuations and improve receiving power factor. This paper proposes coordinated voltage and reactive power control methods that adjust optimal control values of capacitor banks, OLTC, and the AVR of DGs by using a voltage sensitivity factor (VSF) and dynamic programming (DP) with branch-and-bound (B&B) method. To avoid the computational burden, we try to limit the possible states to 24 stages by using a flexible searching space at each stage. Finally, we will show the effectiveness of the proposed method by using operational cost of real power losses and voltage deviation factor as evaluation index for a whole day in a power system with distributed generators.

Analysis of the System Impact of Distributed Generation using EMTP

  • Yeo, Sang-Min;Kim, Il-Dong;Kim, Chul-Hwan;Aggarwal, Raj
    • KIEE International Transactions on Power Engineering
    • /
    • 제4A권4호
    • /
    • pp.201-206
    • /
    • 2004
  • With the advent of distributed generation, power systems in general are impacted in regards to stability and power quality. Distributed generation has positive impacts on system restoration following a fault, higher reliability, and mitigation of effect due to voltage sag. However, distributed generation also has negative impacts on the decrease of reliability such as changes of protective device setting and mal-operation. Because bulk power systems consist of various sources and loads, it is complicated to analyze power systems that have distributed generation. The types of distributed generation usually are classified as the rotating machinery system and the inverter-based system. In this paper, distributed generation is designed as a synchronous generator, and the distribution system with its distributed generation model is simulated using EMTP. In addition, this paper shows the simulation results according to the types of distributed generation

최적조류계산의 분산처리기법에 관한 연구 (An Approach to Implementing Distributed Optimal Power Flow)

  • 김호웅;김발호;김정훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 추계학술대회 논문집 학회본부
    • /
    • pp.182-186
    • /
    • 1997
  • This paper presents a mathematical approach to implementing distributed optimal power flow (OPF), wherein a regional decomposition technique is adopted to parallelize the OPF. Three mathematical decomposition coordination methods are introduced firs to implement the proposed distributed scheme: the Auxiliary Problem Principle (APP), the Predictor-Corrector Proximal Multiplier Method (PCPM), and the Alternating Direction Method (ADM). Then two alternative schemes for modeling distributed OPF are introduced; the Dummy Generator-Dummy Generator (DGDG) scheme and Dummy Generator-Dummy Load (DGDL) scheme. We present the mathematical analyses of the proposed approach, and demonstrate the approach on several test, systems, including IEEE Reliability Test Systems and parts of the ERCOT (Electric Reliability Council of Texas) system.

  • PDF

Thyristor-Based Resonant Current Controlled Switched Reluctance Generator for Distributed Generation

  • Emadi Ali;Patel Yogesh P.;Fahimi Babak
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권1호
    • /
    • pp.68-80
    • /
    • 2007
  • This paper covers switched reluctance generator (SRG) and its comparison with induction and synchronous machines for distributed generation. The SRG is simple in design, robust in construction, and fault tolerant in operation; it can also withstand very high temperatures. However, the performance and cost of the SRG power electronics driver are highly affected by the topology and design of the converter. IGBT and MOSFET based converters are not suitable for very high power applications. This paper presents thyristor-based resonant converters which are superior candidates for very high power applications. Operations of the converters are analyzed and their characteristics and dynamics are determined in terms of the system parameters. The resonant converters are capable of handling high currents and voltages; these converters are highly efficient and reliable as well. Therefore, they are suitable for high power applications in the range of 1MW or larger for distributed generation.

풍력발전단지 보호를 위한 내외부 고장 판별 알고리즘 (A Protection Algorithm Discriminating Between Internal and External Faults for Wind Farms)

  • 권영진;강상희
    • 전기학회논문지
    • /
    • 제56권5호
    • /
    • pp.854-859
    • /
    • 2007
  • A wind farm consists of many wind generator(WG)s therefore, it is generally a complex power system. A wind farm as a distributed generation(DG) affects utility power system. If a conventional protection schemes are applied, it is difficult to detect faults correctly and the schemes can't provide proper coordination in some cases. This paper presents a protection algorithm for a wind farm which consists of a looped collection circuit. Because the proposed algorithm can distinguish between an internal fault and an external fault in a wind farm, The proposed algorithm can disconnect the faulted section in a wind farm. This algorithm is based on an overcurrent protection technique with the change of the ratio of the output current of a generator to the current of the looped line connected to each generator to collect the each generator's power. In addition, operating time of the algorithm is shortened by using the voltage drop at a generator collection point. The performance of the proposed algorithm was verified under various fault conditions using PSCAD/EMTDC simulations.

Single-Phase Virtual Synchronous Generator for Distributed Energy Resources Integration

  • Zeng, Zheng;Cheng, Chong;Tang, Shengqing;Yang, Huan;Zhao, Rongxiang
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제3권3호
    • /
    • pp.264-271
    • /
    • 2014
  • Virtual synchronous generator (VSG) in single-phase to interface distributed renewable energy resources is investigated in this paper. Mathematical models and numerical analysis are utilized to illustrate the features of the VSG. Enhanced control strategy is presented to ensure the performance of the VSG. Besides, a second order generalized integer (SOGI) is employed to calculate the instantaneous output power of the VSG in virtual ${\alpha}{\beta}$ frame. By the means of a phase-locked loop based scheme, the VSG can seamlessly transform between islanded and grid-tied modes, which can meet the requirements of micro-grid. At last, the validation and the proposed approach are verified by the simulated results using PSCAD/EMTDC.

분산전원이 도입된 배전계통에 초전도한류기 적용시 계통보호 시스템의 영향에 관한 연구 (A Study on the Protection of Power Distribution System with the Distributed Generator and Superconducting Fault Current Limiter)

  • 김명현;김진석;임성훈;김재철
    • 전기학회논문지
    • /
    • 제61권9호
    • /
    • pp.1226-1231
    • /
    • 2012
  • The demand for electrical power has been significantly increased to satisfy the customers. As a result, a power distribution system have been advanced by power system's interconnection, installation of distributed generator(DG) and so on. The improvable power distribution system included the problem of increasable fault current. Superconducting fault current limiter (SFCL) is one of the solutions to limit a fault current. Therefore, to solve the problem of fault current by SFCL, simulation was progressed and the simulation used a PSCAD/EMTDC.

Distribution System Reconfiguration Considering Customer and DG Reliability Cost

  • Cho, Sung-Min;Shin, Hee-Sang;Park, Jin-Hyun;Kim, Jae-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권4호
    • /
    • pp.486-492
    • /
    • 2012
  • This paper presents a novel objective function for distribution system reconfiguration for reliability enhancement. When islanding operations of distributed generators is prohibited, faults in the feeder interrupt the operation of distributed generators. For this reason, we include the customer interruption cost as well as the distributed generator interruption cost in the objective function in the network reconfiguration algorithm. The network reconfiguration in which genetic algorithms are used is implemented by MATLAB. The effect of the proposed objective function in the network reconfiguration is analyzed and compared with existing objective functions through case studies. The network reconfiguration considering the proposed objective function is suitable for a distribution system that has a high penetration of distributed generators.