• Title/Summary/Keyword: Distributed Generations (DGs)

Search Result 26, Processing Time 0.022 seconds

Phasor Discrete Particle Swarm Optimization Algorithm to Configure Community Energy Systems (구역전기사업자 구성을 위한 Phasor Discrete Particle Swarm Optimization 알고리즘)

  • Bae, In-Su;Kim, Jin-O
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.9
    • /
    • pp.55-61
    • /
    • 2009
  • This paper presents a modified Phasor Discrete Particle Swarm Optimization (PDPSO) algorithm to configure Community Energy Systems(CESs) in the distribution system. The CES obtains electric power from its own Distributed Generations(DGs) and purchases insufficient power from the competitive power market, to supply power for customers contracted with the CES. When there are two or more CESs in a network, the CESs will continue the competitive expansion to reduce the total operation cost. The particles of the proposed PDPSO algorithm have magnitude and phase angle values, and move within a circle area. In the case study, the results by PDPSO algorithm was compared with that by the conventional DPSO algorithm.

A Practical Voltage Error Correction Technique for Distribution System under Distribution Automation Environment

  • Aslam, Muhammad;Kim, Hyung-Seung;Choi, Myeon-Song;Lee, Seung-Jae
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.669-676
    • /
    • 2018
  • Transmission system has been well studied since long time and power system techniques of distribution system are more or less derived from transmission system. However, unlike transmission systems, many practical issues are encountered in the distribution system. Considerable amount of error is observed in voltage obtained from the Feeder Remote Terminal Units (FRTUs) measured by the pole mounted PTs along the distribution feeder. Load uncertainty is also an issue in distribution system. Further, penetration of Distributed Generators (DGs) creates voltage variations in the system. Hybrid radial/ loop distribution system also make it complicated to handle distribution system. How these constraints to be handled under Distribution Automation (DAS) environment in order to obtain error free voltage is described in this paper and therefore, a new approach of voltage error correction technique has been proposed. The proposed technique utilizes reliable data from substation and the FRTUs installed in DAS. The proposed technique adopts an iterative process for voltage error correction. It has been tested and proved accurate not only for conventional radial systems but also for loop distribution systems.

A Study on Simplified Robust Optimal Operation of Microgrids Considering the Uncertainty of Renewable Generation and Loads (신재생에너지와 부하의 불확실성을 고려한 마이크로그리드의 단순화된 강인최적운영 기법에 관한 연구)

  • Lee, Byung Ha
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.3
    • /
    • pp.513-521
    • /
    • 2017
  • Robust optimal operation of a microgrid is required since the increase of the penetration level of renewable generators in the microgrid raises uncertainty due to their intermittent power output. In this paper, an application of probabilistic optimization method to economical operation of a microgrid is studied. To simplify the treatment of the uncertainties of renewable generations and load, the new 'band of virtual equivalent load variation' is introduced considering their uncertainties. A simplified robust optimization methodology to generate the scenarios within the band of virtual equivalent load variation and to obtain the optimal solution for the worst scenario is presented based on Monte Carlo method. The microgrid to be studied here is composed of distributed generation system(DGs), battery systems and loads. The distributed generation systems include combined heat and power(CHP) and small generators such as diesel generators and the renewable energy generators such as photovoltaic(PV) systems and wind power systems. The modeling of the objective function for considering interruption cost by the penalty function is presented. Through the case study for a microgrid with uncertainties, the validity of proposed robust optimization methodology is evaluated.

A Study on the Effective Downscaling Methodology for Design of a Micro Smart Grid Simulator

  • Ko, Yun-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1425-1437
    • /
    • 2018
  • In this paper, a methodology was proposed to reduce the electrical level and spatial size of the smart grid with distributed generations (DGs) to a scale in which the electrical phenomena and control strategies for disturbances on the smart grid could be safely and freely experimented and observed. Based on the design methodology, a micro smart grid simulator with a substation transformer capacity of 190VA, voltage level of 19V, maximum breaking current of 20A and size of $2{\times}2m^2$ was designed by reducing the substation transformer capacity of 45MVA, voltage level of 23kV and area of $2{\times}2km^2$ of the smart grid to over one thousandth, and also reducing the maximum breaking current of 12kA of the smart grid to 1/600. It was verified that the proposed design methodology and designed micro smart grid simulator were very effective by identifying how all of the fault currents are limited to within the maximum breaking current of 20A, and by confirming that the maximum error between the fault currents obtained from the fault analysis method and the simulation method is within 1.8% through the EMTP-RV simulation results to the micro smart grid simulator model.

Study on Improvement of Overcurernt Relay (OCR)'s Operation Due to Application of Superconducting Fault Current Limiter (SFCL) in Power Distribution System with a Dispersed Generation (분산전원이 도입된 배전계통에 초전도한류기 적용에 따른 과전류계전기 동작향상 연구)

  • Lim, Seung-Taek;Lim, Sung-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.300-304
    • /
    • 2017
  • Due to the introduction of various types of dispersed generations (DGs) with larger capacity in a power distribution system, the short-circuit current is expected to be increased, which more requires for the effective fault current limiting methods. As one of the promising countermeasures, the superconducting fault current limiter (SFCL) has been noticed. However, the decreased fault current by SFCL affects the operation of the overcurrent relay (OCR), representative protective device in a power distribution system. In this paper, the operation of the overcurrent relay due to the application of a SFCL in a power distribution system with DG linked by its bus line was analysed through the short-circuit tests. To analyze the effect of the SFCL application in a power distribution system with DG, the experimental simulated circuits were designed and the short-circuit tests for the power distributed system assembled with the DG, the OCR and the SFCL were carried out. Through the analysis on the short-circuit tests, the application of the SFCL in a power distribution system with DG could be confirmed to be contributed to the operational improvement of overcurrent relay.

Modeling of Practical Photovoltaic Generation System using Controllable Current Source based Inverter (제어 가능한 전류원 기반의 인버터를 이용한 실제적 태양광 발전 시스템 모델링)

  • Oh, Yun-Sik;Cho, Kyu-Jung;Kim, Min-Sung;Kim, Ji-Soo;Kang, Sung-Bum;Kim, Chul-Hwan;Lee, You-Jin;Ko, Yun-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.8
    • /
    • pp.1340-1346
    • /
    • 2016
  • Utilization of Distributed Generations (DGs) using Renewable Energy Sources (RESs) has been constantly increasing as they provide a lot of environmental, economic merits. In spite of these merits, some problems with respect to voltage profile, protection and its coordination system due to reverse power flow could happen. In order to analyze and solve the problems, accurate modeling of DG systems should be preceded as a fundamental research task. In this paper, we present a PhotoVoltaic (PV) generation system which consists of practical PV cells with series and parallel resistor and an inverter for interconnection with a main distribution system. The inverter is based on controllable current source which is capable of controlling power factors, active and reactive powers within a certain limit related to amount of PV generation. To verify performance of the model, a distribution system based on actual data is modeled by using ElectroMagnetic Transient Program (EMTP) software. Computer simulations according to various conditions are also performed and it is shown from simulation results that the model presented is very effective to study DG-related researches.