• Title/Summary/Keyword: Distributed Energy Resources

Search Result 213, Processing Time 0.021 seconds

Increasing Hosting Capacity of Distribution Feeders by Analysis of Generation and Consumption (배전선로 부하량 및 발전량 분석을 통한 신재생 접속허용용량 기준 상향에 대한 연구)

  • Kim, Seong-Man
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.4
    • /
    • pp.295-309
    • /
    • 2019
  • This paper demonstrates that the verification and analysis of the increase of hosting capacity of distributed energy resources in distribution system for the high penetration of distributed energy resources. In the case of generally designed distribution feeders in South Korea, it can host up to 10 MVA of distributed energy resources and the over voltage due to reverse power flow is prohibited beyond the range by the law of electric utility. However, it should take into consideration that there are some factors of extra hosting capacity such as generation characteristics of distributed energy resources and minimum loads that always exist to distribution system. For these reason, we choose a specific distribution system hosted 10 MVA of distributed energy resources monitored by distribution system operator and verify the impact of increasing hosting capacity such as power flow and voltage profile of distribution system. By the result, we could find that it is possible to increase the hosting capacity and define the factors to expand the hosting capacity of distributed energy resources in distribution system.

DER Energy Management System for Optimal Management of Grid-Connected Microgrids (전력망 연계형 마이크로그리드 최적운영을 위한 분산에너지자원 에너지관리시스템)

  • Choi, Jongwoo;Shin, Youngmee;Lee, Il-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.4
    • /
    • pp.932-938
    • /
    • 2017
  • This paper presents the structure of an energy management system for distributed energy resources of a grid-connected microgrid. The energy management system of a grid-connected microgrid collects information of the microgrid such as the status of distributed energy resources and the time varying pricing plan through various protocols. The energy management system performs forecasting and optimization based on the collected information. It derives the operation schedule of distributed energy resources to reduce the microgrid electricity bill. In order to achieve optimal operation, the energy management system should include an optimal scheduling algorithm and a protocol that transfers the derived schedule to distributed energy resources. The energy management system operates as a rolling horizon controller in order to reduce the effect of a prediction error. Derived control schedules are transmitted to the distributed energy resources in real time through the international standard communication protocol.

Restoration of Distribution System with Distributed Energy Resources using Level-based Candidate Search

  • Kim, Dong-Eok;Cho, Namhun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.637-647
    • /
    • 2018
  • In this paper, we propose a method to search candidates of network reconfiguration to restore distribution system with distributed energy resources using a level-based tree search algorithm. First, we introduce a method of expressing distribution network with distributed energy resources for fault restoration, and to represent the distribution network into a simplified graph. Second, we explain the tree search algorithm, and introduce a method of performing the tree search on the basis of search levels, which we call a level-based tree search in this paper. Then, we propose a candidate search method for fault restoration, and explain it using an example. Finally, we verify the proposed method using computer simulations.

Integrated Voltage and Power Flow Management Considering the Cost of Opera in Active Distribution Networks

  • Xu, Tao;Guo, Lingxu;Wei, Wei;Wang, Xiaoxue;Wang, Chengshan;Lin, Jun;Li, Tianchu
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.274-284
    • /
    • 2016
  • The increasing penetration of distributed energy resources on the distribution networks have brought a number of technical impacts where voltage and thermal variations have been identified as the dominant effects. Active network management in distribution networks aims to integrate distributed energy resources with flexible network management so that distributed energy resources are organized to make better use of existing capacity and infrastructure. This paper propose active solutions which aims to solve the voltage and thermal issues in a distributed manner utilizing a collaborative approach. The proposed algorithms have been fully tested on a distribution network with distributed generation units.

A Review on the Grid-Connected Technology of the Distributed Energy Resources (분산형전원의 계통연계기술 리뷰)

  • Lee, Kyungsoo
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.371-372
    • /
    • 2014
  • This review focuses on grid-connected technology for distributed energy resources(DER). The grid-connected technology is categorized into three classifications: 1) protection function; 2) power quality improvement function; 3) grid stabilization fuction. Grid codes comparison of Japan, USA, EU and Korea is also described in the paper.

  • PDF

The Power Brokerage Trading System for Efficient Management of Small-Scale Distributed Energy-Resources (소규모 분산에너지자원의 효율적인 관리를 위한 전력중개거래시스템)

  • Yang, Soo-Young;Kim, Yo-Han;Lee, Woo;Kim, Won-Jung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.735-742
    • /
    • 2021
  • Recently, renewable energy-related power generation facilities have been surging due to the government's "Renewable Energy 3020", "Green New Deal", "2050 Carbon Neutrality" and "K-RE100" policies. Most renewable energy facilities are small and distributed, making it difficult to manage efficiently, and small distributed resources less than 1MW are having a hard time with participating in the market due to the limited sales and avoidance of trading. In particular, the intermittency of renewable energy has a significant impact on the stability of the power grid. The government is seeking to address volatility and intermittency issues through 'small distributed resource brokerage trading, and to expand the systematic resourceization and acceptability of heterogeneous large and small distributed resources. In this work, we intend to apply an AI-based power generation prediction model to a distributed resource brokerage trading system so that it can be utilized as a foundation platform for pioneering new energy business markets.

KEPCO's Movement on Distribution Sector Regarding Renewable Energy Transition of Distribution Network in Korea (국내 배전망 정책 및 환경변화를 고려한 배전부분 발전방향 연구)

  • Hyun, Seung-Yoon;Kim, Chang-Hwan;Lee, Byung-Sung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.1
    • /
    • pp.93-99
    • /
    • 2021
  • The government has proposed a mission to enhance intelligent power networks, decrease coal-fired generation, expand distributed energy resources, and promote energy prosumer into the distribution network in Korea. Installation cost of facility expansion to guaranteed interconnection with small distributed energy resources increases dramatically on KEPCO's distribution sector. And it is hard to withdraw in time. In addition, there are explicit research is required to meet the reliability on grid corresponding to the increase of distributed power. Infrastructure support for accommodating energy prosumer is also needed. Therefore, KEPCO is pushing transition to DSO by expanding distribution management scope and changing its roles. In addition, KEPCO is proactively preparing for integrated operation between distribution network and existing distributed power which is accommodated passively. KEPCO is also trying to accept multiple network users, e.g. building platforms, to manage a data and promote new markets. In the long term, transition to DSO will achieve saving investment costs for accommodating distributed sources and maintaining stable electrical quality. And it will be possible to create new business model using the platform to secure revenue.

Microgrid Island Operation Based on Power Conditioning System with Distributed Energy Resources for Smart Grid (스마트 그리드를 위한 분산자원과 전력변환장치 기반 마이크로그리드 독립운전)

  • Heo, Sewan;Park, Wan-Ki;Lee, Ilwoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.5
    • /
    • pp.1093-1101
    • /
    • 2017
  • Microgrid as a unit component consisting a smart grid is an isolated system, which has a decentralized power supply system. This paper proposes an electrical isolation of the microgrid from the utiliy grid based on a power conditioning system, and also proposes an operation method maintaining the isolated state efficiently using diverse distributed energy resources such as renewable energy sources and energy storage system. The proposed system minimizes the influence of the grid connection on the internal load though a phase detection and synchrnoization to the utiligy grid and the microgrid can be stable even if the grid is failed.

Single-Phase Virtual Synchronous Generator for Distributed Energy Resources Integration

  • Zeng, Zheng;Cheng, Chong;Tang, Shengqing;Yang, Huan;Zhao, Rongxiang
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.3
    • /
    • pp.264-271
    • /
    • 2014
  • Virtual synchronous generator (VSG) in single-phase to interface distributed renewable energy resources is investigated in this paper. Mathematical models and numerical analysis are utilized to illustrate the features of the VSG. Enhanced control strategy is presented to ensure the performance of the VSG. Besides, a second order generalized integer (SOGI) is employed to calculate the instantaneous output power of the VSG in virtual ${\alpha}{\beta}$ frame. By the means of a phase-locked loop based scheme, the VSG can seamlessly transform between islanded and grid-tied modes, which can meet the requirements of micro-grid. At last, the validation and the proposed approach are verified by the simulated results using PSCAD/EMTDC.