• Title/Summary/Keyword: Distributed Design

Search Result 3,428, Processing Time 0.031 seconds

Low-Complexity Design of Quantizers for Distributed Systems

  • Kim, Yoon Hak
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.3
    • /
    • pp.142-147
    • /
    • 2018
  • We present a practical design algorithm for quantizers at nodes in distributed systems in which each local measurement is quantized without communication between nodes and transmitted to a fusion node that conducts estimation of the parameter of interest. The benefits of vector quantization (VQ) motivate us to incorporate the VQ strategy into our design and we propose a low-complexity design technique that seeks to assign vector codewords into sets such that each codeword in the sets should be closest to its associated local codeword. In doing so, we introduce new distance metrics to measure the distance between vector codewords and local ones and construct the sets of vector codewords at each node to minimize the average distance, resulting in an efficient and independent encoding of the vector codewords. Through extensive experiments, we show that the proposed algorithm can maintain comparable performance with a substantially reduced design complexity.

인터넷 기반 Collaborative Design 시스템 개발

  • 한승헌;차주현;최용제
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.687-690
    • /
    • 1995
  • The configuration of design technology in 21st century must require collaborative design system, in which distributed design organizations and their related enterprises can mutually cooperate by overcoming time and regional restictions, and by exactily exchanging and sharing desing data. To achieve these objectives, it is necessary that the design system can propery deal with the dynamic change between regionally distributed modules. In this paper, we will discuss developing the dynamic virtual collaborative design system based on WWW by implementing recent web technologies such as Java and VRML.

  • PDF

Data Server Oriented Computing Infrastructure for Process Integration and Multidisciplinary Design Optimization (다분야통합최적설계를 위한 데이터 서버 중심의 컴퓨팅 기반구조)

  • 홍은지;이세정;이재호;김승민
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.4
    • /
    • pp.231-242
    • /
    • 2003
  • Multidisciplinary Design Optimization (MDO) is an optimization technique considering simultaneously multiple disciplines such as dynamics, mechanics, structural analysis, thermal and fluid analysis and electromagnetic analysis. A software system enabling multidisciplinary design optimization is called MDO framework. An MDO framework provides an integrated and automated design environment that increases product quality and reliability, and decreases design cycle time and cost. The MDO framework also works as a common collaborative workspace for design experts on multiple disciplines. In this paper, we present the architecture for an MDO framework along with the requirement analysis for the framework. The requirement analysis has been performed through interviews of design experts in industry and thus we claim that it reflects the real needs in industry. The requirements include integrated design environment, friendly user interface, highly extensible open architecture, distributed design environment, application program interface, and efficient data management to handle massive design data. The resultant MDO framework is datasever-oriented and designed around a centralized data server for extensible and effective data exchange in a distributed design environment among multiple design tools and software.

Building Light Weight CORBA Based Middleware for the CAN Bus Systems

  • Hong, Seongsoo
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.3
    • /
    • pp.181-189
    • /
    • 2001
  • The software components of embedded control systems get extremely complex as they are designed into distributed systems get extremely complex as they are designed into distributed systems consisting of a large number of inexpensive microcontrollers interconnected by low-bandwidth real-time networks such as the controller area network (CAN). While recently emerging middleware technologies such as CORBA and DCOM address the complexity of distributed programming, they cannot be directly applied to distributed control system design due to their excessive resource demand and inadequate communication models. In this paper, we propose a CORBA-based middleware design for CAN-based distributed embedded control systems. Our design goal is to minimize its resource need and make it support group communication without losing the IDL (interface definition language) level compliance to the OMG standards. To achieve this, we develop a transport protocol on the CAN and a group communication scheme based on the well-known publisher/subscriber model. The protocol effectively realizes subject-based addressing and supports anonymous publisher/subscriber communication. We also customize the method invocation and message passing protocol, referred to as the general inter-ORB protocol (GIOP), of CORBA so that CORBA method invocations are efficiently serviced on a low-bandwidth network such as the CAN. This customization includes packed data encoding and variable-length integer encoding for compact representation of IDL data types. We have implemented our CORBA-based middleware on the mArx real-time operating system we have developed at Seoul National University. Our experiments clearly demonstrate that it is feasible to use CORBA in developing distributed embedded control systems possessing severe resource limitations. Our design clearly demonstrates that it is feasible to use a CORBA-based middleware in developing distributed embedded systems on real-time networks possessing severe resource limitations.

  • PDF

Design and Control of Interleaved Buck Converter in High Power Applications

  • Kwon, Soon-Kurl;Saha, Bishwajit
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.3
    • /
    • pp.199-204
    • /
    • 2007
  • This paper presents design of interleave configured dc-dc converter for high power distributed power system applications. The multi channel interleaving buck converter with small inductance has proved to be suitable for micro-grid, requiring medium output voltages, high output currents and fast transient response. Integrated magnetic components are used to reduce the size of the converter and improve efficiency. Unlike conventional methods, the distributed approach requires no centralized control, automatically accommodates varying numbers of converter cells, and is highly tolerant of subsystem failures. A general methodology for achieving distributed interleaving is proposed, along with a specific implementation approach. The design and simulation verification of switching frequency 10 kHz system is presented with interleaved clocking of the converter cells. The simulation (simulated by PSIM 6.1) results corroborate the analytical predictions and demonstrate the tremendous benefits of the distributed interleaving approach.

  • PDF

Design and evaluation of a distributed TDR moisture sensor

  • Zhang, Bin;Yu, Xinbao;Yu, Xiong
    • Smart Structures and Systems
    • /
    • v.6 no.9
    • /
    • pp.1007-1023
    • /
    • 2010
  • This paper describes the development and evaluation of an innovative TDR distributed moisture sensor. This sensor features advantages of being responsive to the spatial variations of the soil moisture content. The geometry design of the sensor makes it rugged for field installation. Good linear calibration is obtained between the sensor measured dielectric constant and soil physical properties. Simulations by the finite element method (FEM) are conducted to assist the design of this sensor and to determine the effective sampling range. Compared with conventional types of moisture sensor, which only makes point measurement, this sensor possesses distributed moisture sensing capability. This new sensor is not only easy to install, but also measures moisture distribution with much lower cost. This new sensor holds promise to significantly improve the current field instruments. It will be a useful tool to help study the influence of a variety of moisture-related phenomena on infrastructure performance.

Finite Element Analysis with STEP in Distributive and Collaborative Environment (분산 협업 환경에서의 유한요소 해석에 관한 연구)

  • Cho, Seong-Wook;Kwon, Ki-Eak
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.5
    • /
    • pp.384-392
    • /
    • 2006
  • In this research, the feasibility of distributed finite element analysis system with STEP and CORBA has been investigated. The enabling technologies such as CORBA and Java play key roles in the development of integrated and geographically distributed application software. In addition to the distribution of analysis modules, numerical solution process itself is again divided into parallel processes using multi-frontal method for computational efficiency. In contrast to the specially designed parallel process for specific hardware, CORBA-based parallel process is well suited for heterogeneous platforms over the network. The idea of Web-based distributed analysis system may be applied to the engineering ASP for design and analysis in the product development processes. We believe that the proposed approach for the analysis can be extended to the entire product development process for sharing and utilizing common product data in the distributed engineering environment, thus eventually provide basis for virtual enterprise.

Design of a Microwave Distributed Amplifier Considering Capacitance Absorption Capability (정전용량 흡수 능력을 고려한 마이크로파 분포증폭기 설계)

  • Kim, Nam-Tae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.11
    • /
    • pp.50-55
    • /
    • 2009
  • In this paper, a distributed amplifier is designed using distributed network synthesis that provides the optimum absorption capability of a capacitance. Transfer functions of filters, which consist of the amplifier, are synthesized by a low-pass Chebyshev approximation. Capacitances that a filter network can absorb are calculated as a function of its minimum insertion loss(MIL) and ripple. Active devices in a distributed amplifier are modeled as equivalent circuits by using their S-parameters, and their equivalent capacitances are absorbed into filter structures by properly adjusting the MIL and ripple of a transfer function. As an application example, a distributed amplifier with the gain of about 12.5dB is designed that operates over the frequency range between 0.1 and 7.5GHz. Experimental results prove that distributed network synthesis, which considers capacitance absorption capability, is useful to the design of distributed amplifiers.

Design and Implementation of a Distributed Rendering Management System for Special Purpose Renderer (특정 목적 렌더러에 특화된 분산 렌더링 관리 시스템의 설계 및 구현)

  • Lee, In;Kang, Kyung-Kyu;Jung, Yu-Gu;Lee, Jae-Woon;Kim, Dong-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.2
    • /
    • pp.60-68
    • /
    • 2012
  • This paper describes design and implementation of a distributed rendering management system using existing rendering module. Currently, most of 3D commercial software provide modeling, rendering and distributed environment in the whole package. So, the server and client should use the given renderer as is, without the required features. In this paper, we propose a distributed rendering management system that consist of rendering module and distributed rendering client-server. The rendering module can be executed independently and managed by the distributed rendering client. The server requests rendering for each connected client. After the execution, the server gathers rendering result from each client. After gathering, the server provides the rendering result to the user.

Real-Time Communication using TMO(Time-Triggered and Message-Triggered Object) in Distributed Computing Systems

  • Kim, Gwang-Jun;Kim, Chun-Suk;Kim, Yong-Gin;Yoon, Chan-Ho;Kim, Moon-Hwan
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.1
    • /
    • pp.12-22
    • /
    • 2003
  • Real-time(RT) object-oriented(OO) distributed computing is a form of RT distributed computing realized with a distributed computer system structured in the form of an object network. Several approached proposed in recent years for extending the conventional object structuring scheme to suit RT applications, are briefly reviewed. Then the approach named the TMO (Time-triggered Message-triggered Object) structuring scheme was formulated with the goal of instigating a quantum productivity jump in the design of distributed time triggered simulation. The TMO scheme is intended to facilitate the pursuit of a new paradigm in designing distributed time triggered simulation which is to realize real-time computing with a common and general design style that does not alienate the main-stream computing industry and yet to allow system engineers to confidently produce certifiable distributed time triggered simulation for safety-critical applications. The TMO structuring scheme is a syntactically simple but semantically powerful extension of the conventional object structuring approached and as such, its support tools can be based on various well-established OO programming languages such as C++ and on ubiquitous commercial RT operating system kernels. The Scheme enables a great reduction of the designers efforts in guaranteeing timely service capabilities of application systems