The information system of corporations are facing a new environment expressed by miniaturization, decentralization and Open System. It is therefore of utmost importance for corporations to adapt flexibly th such new environment by providing for corresponding changes to their existing information systems. The objectives of this study are to identify this new environment faced by today′s information system and develop effective methods for data resource management under this new environment. In this study, it is assumed that the new environment faced by information systems can be specified as Distributed Computing Environment, and in order to achieve such system, presents Client/server architecture as its representative computing structure, This study defines Client/server architecture as a computing architecture which specialize the fuctionality of the client system and the server system in order to have an application distribute and perform cooperative processing at the best platform. Furthermore, from among the five structures utilized in Client/server architecture for distribution and cooperative processing of application between server and client this study presents two different data management methods under the Client/server environment; one is "Remote Data Management Method" which uses file server or database server and. the other is "Distributed Data Management Method" using distributed database management system. The result of this study leads to the conclusion that in the client/server environment although distributed application is assumed, the data could become centralized (in the case of file server or database server) or decentralized (in the case of distributed database system) and the data management method through a distributed database system where complete responsibility and powers with respect to control of data used by the user are given not only is it more adaptable to modern flexible corporate environment, but in terms of system operation, it presents a more efficient data management alternative compared to existing data management methods in terms of cutting costs.
KSII Transactions on Internet and Information Systems (TIIS)
/
제11권5호
/
pp.2778-2791
/
2017
In the age of big data, distributed data providers need to ensure the privacy, while data analysts need to mine the value of data. Therefore, how to find the privacy-utility tradeoff has become a research hotspot. Besides, the adversary may have the background knowledge of the data source. Therefore, it is significant to solve the privacy-utility tradeoff problem in the distributed environment with side information. This paper proposes a distributed privacy-utility tradeoff method using distributed lossy source coding with side information, and quantitatively gives the privacy-utility tradeoff region and Rate-Distortion-Leakage region. Four results are shown in the simulation analysis. The first result is that both the source rate and the privacy leakage decrease with the increase of source distortion. The second result is that the finer relevance between the public data and private data of source, the finer perturbation of source needed to get the same privacy protection. The third result is that the greater the variance of the data source, the slighter distortion is chosen to ensure more data utility. The fourth result is that under the same privacy restriction, the slighter the variance of the side information, the less distortion of data source is chosen to ensure more data utility. Finally, the provided method is compared with current ones from five aspects to show the advantage of our method.
Recently, huge datasets have been generating rapidly in a variety of fields. Then, there is an urgent need for technologies that will allow efficient and effective processing of huge datasets. Therefore the problems of partitioning a huge dataset effectively and alleviating the processing overhead of the partitioned data efficiently have been a critical factor for scalability and performance in distributed database system. In our work we utilized multicore servers to provide scalable service to our distributed system. The partitioning of database over multicore servers have emerged from a need for new architectural design of distributed database system from scalability and performance concerns in today's data deluge. The system allows uniform access through a web service interface to concurrently distributed databases over multicore servers, using SQMD (Single Query Multiple Database) mechanism based on publish/subscribe paradigm. We will present performance results with the distributed database system built on multicore server, which is time intensive with traditional architectures. We will also discuss future works.
분산 컴퓨팅이란 다수의 서버로 구성된 분산 시스템에서 데이터를 효율적으로 저장 및 처리하는 기술이다. 따라서 분산 시스템을 구성하는 서버의 상태에 따라 분산 컴퓨팅의 성능에 큰 영향을 미친다. 본 논문은 분산 시스템에서 실시간으로 발생하는 시스템 자원의 로그 데이터를 수집하고 이상을 탐지하여 결과를 시각화하는 자가 진단 시스템을 제안한다. 먼저, 자가 진단 과정을 수집, 전달, 분석, 저장, 시각화의 다섯 단계로 구분한다. 다음으로, 자가 진단 과정이 실시간성, 확장성, 고가용성의 목표를 만족하도록 실시간 자가 진단 시스템을 설계한다. 본 시스템은 대표적인 실시간 분산 기술인 Apache Flume, Apache Kafka, Apache Storm을 기반으로 구현되어 실시간성, 확장성, 고가용성의 세 가지 목표를 만족할 수 있다. 또한, 자가 진단 과정에서 로그 데이터 처리의 지연을 최소화하도록 간단하지만 효과적인 이동 평균 및 3-시그마 기반 이상 탐지 기법을 사용한다. 본 논문의 결과를 통해, 분산 시스템 내에서 서버 상태를 실시간으로 진단할 수 있는 분산 실시간 자가 진단 시스템을 구축할 수 있다.
International Journal of Computer Science & Network Security
/
제23권10호
/
pp.135-146
/
2023
An effective educational program warrants the inclusion of an innovative construction which enhances the higher education efficacy in such a way that accelerates the achievement of desired results and reduces the risk of failures. Educational Decision Support System (EDSS) has currently been a hot topic in educational systems, facilitating the pupil result monitoring and evaluation to be performed during their development. Insufficient information systems encounter trouble and hurdles in making the sufficient advantage from EDSS owing to the deficit of accuracy, incorrect analysis study of the characteristic, and inadequate database. DMTs (Data Mining Techniques) provide helpful tools in finding the models or forms of data and are extremely useful in the decision-making process. Several researchers have participated in the research involving distributed data mining with multi-agent technology. The rapid growth of network technology and IT use has led to the widespread use of distributed databases. This article explains the available data mining technology and the distributed data mining system framework. Distributed Data Mining approach is utilized for this work so that a classifier capable of predicting the success of students in the economic domain can be constructed. This research also discusses the Intelligent Knowledge Base Distributed Data Mining framework to assess the performance of the students through a mid-term exam and final-term exam employing Multi-agent system-based educational mining techniques. Using single and ensemble-based classifiers, this study intends to investigate the factors that influence student performance in higher education and construct a classification model that can predict academic achievement. We also discussed the importance of multi-agent systems and comparative machine learning approaches in EDSS development.
오늘날 인터넷은 하나의 거대한 분산 정보 서비스센터의 역할을 수행하며 여러 가지 많은 정보들과 이를 관리 운영하는 데이터 베이스 서버들은 분산된 네트워크 환경 속에서 광범위하게 존재하고 있다. 그러나 우리는 데이터 특성에 따라 입력 데이터를 처리할 서버를 결정하는데 여러 가지 어려움을 겪고 있다. 본 논문에서는 분산 환경 속에 존재하는 수많은 데이터들 가운데 신경망을 이용해 입력 데이터 패턴을 가장 효율적으로 처리할 수 있는 목적지 서버를 마이닝하는 기법과 이를 기반으로 한 지능적 데이터 마이닝 시스템 구조를 설계하였다. 그 결과로서 새로운 입력 데이터패턴이 신경망으로 구현된 동적 바인딩 방법에 따라 목적지 서버를 결정한 후 처리됨을 보였다. 이 기법은 데이터 웨어하우스, 통신 및 전력부하패턴 분석, 인구센서스 분석, 의료데이터 분석에 활용될 수 있다.
본 논문은 원격지간의 연결된 대규모 분산 환경에서 데이터 분석 작업의 실행을 위해 필수적으로 고려되는 데이터 전송 부하를 감소시키는 기법을 제안한다. 계산 노드들이 밀집된 지역 인근에 다수의 데이터 노드를 배치시킴으로서 계산 노드들이 단일 데이터센터가 아닌 자신과 인접한 데이터 노드에 접근하여 작업을 수행함으로서 전송부하를 감소시키고 확장성을 증가시키는 것이 가능하다. 따라서 본 논문은 지역적으로 분산된 데이터 노드들의 데이터 처리율을 기반으로 실시간 데이터 공급을 수행함으로서 전송 지연을 최소화 할 수 있는 이론적인 모델과 시뮬레이션을 통한 성능 평가를 수행한다. 제안된 기법은 PRAGMA 그리드 테스트베드에서 실험을 통하여 성능의 우수성을 검증하였다.
The Real-time Distributed Control Systems(RDCS) consist of several distributed control processes which share a network medium to exchange their data. Performance of feedback control loops in the RDCS is subject to the network-induced delays from sensor to controller and from controller to actuator. The network-induced delays are directly dependent upon the data sampling times of the control components which share a network medium. In this study, a scheduling algorithm of determining data sampling times is developed using the window concept, where the sampling data from the control components dynamically share a limited number of windows.
The growth of the World Wide Web and the advances in high-speed network access have greatly changed existing CAD/CAE environment. The WWW has enabled us to share various distributed product data and to collaborate in the design process. An international standard for the product model data, STEP, and a standard for the distributed object technology, CORBA, are very important technological components for the interoperability in the advanced design and manufacturing environment. These two technologies provide background for the sharing of product data and the integration of applications on the network. This paper describes a distributed CAD/CAE environment that is integrated on the network by CORBA and product model data standard STEP. Several prototype application modules were implemented to verify the proposed concept and the test result is discussed. Finite element analysis server are further distributed into several frontal servers for the implementation of distributed parallel solution of finite element system equations. Distributed computation of analysis server is also implemented by using CORBA for the generalization of the proposed method.
빅 데이터(Big Data)시대로 접어들면서 기존의 IT 환경에서 만들어진 알고리즘들은 하둡과 같은 분산 아키텍처에 그대로 적용할 수 없거나 효율이 떨어진다. 따라서, 맵리듀스와 같은 분산 프레임워크를 적용한 새로운 알고리즘들이 필요하다. 벡터 양자화에 많이 사용되는 Lloyd의 알고리즘도 맵리듀스를 사용하여 개발이 이루어지고 있다. 본 논문에서는 기존의 맵리듀스를 사용한 분산 VQ 코드북 생성 알고리즘을 수정하여 좀 더 빠른 분석 결과를 보일 수 있는 디컴바인드 분산 VQ 코드북 생성 알고리즘을 제안하였다. 제안하는 알고리즘을 빅 데이터에 적용한 결과 기존 방법보다 높은 성능을 보인 것을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.