Grid computing is a service that share geographically distributed computing resources through high speed network. In this paper, we propose hybrid scheduling scheme which considers not only meta-scheduling scheme to distribute the job between the nodes of grid computing system but also the job scheduling to distribute the job within the local nodes. According to the number of processors needed and expected execution time, the job with high priority is allocated to job queue while the one with low priority and remote job are allocated to backfill queue. We evaluate the proposing scheme through the various experiments and the results show that the utilization of grid computing system increases and the job slowdown decreases.
International Journal of Computer Science & Network Security
/
v.24
no.9
/
pp.157-161
/
2024
Cloud computing becomes an important technology for distributed computing and parallel computing. Cloud computing provides various facility like to share resources, software packages, information, storage and many different applications depending on user demand at any time and at any place. It provides an extensive measure for computing and storage. A service provided by it to user follows pay-as-you-go model. Although it provides many facilities still there is some problem which are resource discovery, fault tolerance, load balancing, and security. Out of these Load balancing is the main challenges. There are many techniques which used to distribute wor9kload or task equally across the servers. This paper includes cloud computing, cloud computing architecture, virtualization and MS load balancing technique which provide enhanced load balancing.
While an information system and administration for an application that a user contacts with raise a head by an important problem, a system approach and methodology for administration are mentioned. Authentication technology of various configuration is used, but non-efficiency by complicated authentication administration and operation inappropriate use are for a successful expansion of various and new business of wire/wireless environment. In addition, under the mobile computer environment with different authentic method each other, it is difficult at all to expect flexible and continuous service. Under the ubiquitous computing environment, It is very important thing plan to research and develop compatibility and the side of variance authentication plan that preservation characteristics are helped. Hereby, This paper look around an requirement items and authority mechanism for the administration and the operation mechanism of the distributed authentication considering expansion possibility of the ubiquitous computing environment not only fixed computing environment but also mobile computing. In future, we expect it by can guide positive participation about distributed authentication technique of the genuine ubiquitous environment.
The recommend system is getting more difficult real time recommend by lager preference data set, computing power and recommend algorithm. For this reason, recommend system is proceeding actively one's studies toward distribute processing method of large preference data set. This paper studied distribute processing method of large preference data set using hadoop distribute processing platform and mahout machine learning library. The recommend algorithm is used Co-occurrence Matrix similar to item Collaborative Filtering. The Co-occurrence Matrix can do distribute processing by many node of hadoop cluster, and it needs many computation scale but can reduce computation scale by distribute processing. This paper has simplified distribute processing of co-occurrence matrix by changes over from four stage to three stage. As a result, this paper can reduce mapreduce job and can generate recommend file. And it has a fast processing speed, and reduce map output data.
Recently, there have been active researches about the VPCS (Virtual Parallel Computing System) based on multiple agents. The PVCS uses personal computers or workstations that are dispersed all over the internet, rather than a high-cost supercomputer, to solve complex problems that require a huge number of calculations. It can be made up with either homogeneous or heterogeneous computers, depending on resources available on the internet. In this paper, we propose a new method in order to distribute worker agents and work packages efficiently on the VPCS based on the IBM Aglets. The previous methods use mainly the master-slave pattern for distributing worker agents and work packages. However, in these methods the workload increases dramatically at the central master as the number of agents increases. As a solution to this problem, our method appoints worker agents to distribute worker agents and workload packages. The proposed method is evaluated in several ways on the VPCS, and its results are improved to be worthy of close attention as compared with the previous ones.
International journal of advanced smart convergence
/
v.1
no.2
/
pp.12-15
/
2012
Energy costs for operating and cooling computing resources in Cloud infrastructure have increased significantly up to the point where they would surpass the hardware purchasing costs. Thus, reducing the energy consumption can save a significant amount of management cost. One of major approach is removing hardware over-provisioning. In this paper, we propose a technique that facilitates power saving through reducing resource over provisioning based on virtualization technology. To this end, we use dynamic workload shaping to reschedule and redistribute job requests considering overall power consumption. In this paper, we present our approach to shape workloads dynamically and distribute them on virtual machines and physical machines through virtualization technology. We generated synthetic workload data and evaluated it in simulating and real implementation. Our simulated results demonstrate our approach outperforms to when not using no workload shaping methodology.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.11
no.12
/
pp.5694-5711
/
2017
The technology of cloud computing is growing very quickly, thus it is required to manage the process of resource allocation. In this paper, load balancing algorithm based on honey bee behavior (LBA_HB) is proposed. Its main goal is distribute workload of multiple network links in the way that avoid underutilization and over utilization of the resources. This can be achieved by allocating the incoming task to a virtual machine (VM) which meets two conditions; number of tasks currently processing by this VM is less than number of tasks currently processing by other VMs and the deviation of this VM processing time from average processing time of all VMs is less than a threshold value. The proposed algorithm is compared with different scheduling algorithms; honey bee, ant colony, modified throttled and round robin algorithms. The results of experiments show the efficiency of the proposed algorithm in terms of execution time, response time, makespan, standard deviation of load, and degree of imbalance.
Computer Aided Engineering (CAE) is very helpful field for every manufacturing industry including foundry. It covers CAD, CAM, and simulation technology also, and becomes as common sense in developing new products and processes. In South Korea, more than 600 foundries exist, and their average employee number is less than 40. Moreover, average age of them becomes higher. To break out these situations of foundry, software tools can be effective, and many commercial software tools had already been introduced. But their high costs and risks of investment act as difficulties in introducing the software tools to SMEs (Small and Medium size Enterprise). So we had developed cloud computing platform to propagate the CAE technologies to foundries. It includes HPC (High Performance Computing), platforms and software. So that users can try, enjoy, and utilize CAE software at cyber space without any investment. In addition, we also developed platform APIs (Application Programming Interface) to import not only our own CAE codes but also 3rd-party's packages to our cloud-computing platforms. As a result, CAE developers can upload their products on cloud platforms and distribute them through internet.
In recent years, the Graphics Processing Unit (GPU) has become a competitive computing technology in comparison with the standard Central Processing Unit (CPU) technology due to reduced unit cost, energy and computing time. This paper describes the derivation and implementation of GPU-based algorithms for the analysis of wind loading uncertainty on high-rise systems, in line with the research field of probability-based wind engineering. The study begins by presenting an application of the GPU technology to basic linear algebra problems to demonstrate advantages and limitations. Subsequently, Monte-Carlo integration and synthetic generation of wind turbulence are examined. Finally, the GPU architecture is used for the dynamic analysis of three high-rise structural systems under uncertain wind loads. In the first example the fragility analysis of a single degree-of-freedom structure is illustrated. Since fragility analysis employs sampling-based Monte Carlo simulation, it is feasible to distribute the evaluation of different random parameters among different GPU threads and to compute the results in parallel. In the second case the fragility analysis is carried out on a continuum structure, i.e., a tall building, in which double integration is required to evaluate the generalized turbulent wind load and the dynamic response in the frequency domain. The third example examines the computation of the generalized coupled wind load and response on a tall building in both along-wind and cross-wind directions. It is concluded that the GPU can perform computational tasks on average 10 times faster than the CPU.
Alasmari, Moteb K.;Alwakeel, Sami S.;Alohali, Yousef
International Journal of Computer Science & Network Security
/
v.22
no.3
/
pp.163-172
/
2022
The interconnection of an enormous number of devices into the Internet at a massive scale is a consequence of the Internet of Things (IoT). As a result, tasks offloading from these IoT devices to remote cloud data centers become expensive and inefficient as their number and amount of its emitted data increase exponentially. It is also a challenge to optimize IoT device energy consumption while meeting its application time deadline and data delivery constraints. Consequently, Fog Computing was proposed to support efficient IoT tasks processing as it has a feature of lower service delay, being adjacent to IoT nodes. However, cloud task offloading is still performed frequently as Fog computing has less resources compared to remote cloud. Thus, optimized schemes are required to correctly characterize and distribute IoT devices tasks offloading in a hybrid IoT, Fog, and cloud paradigm. In this paper, we present a detailed survey and classification of of recently published research articles that address the energy efficiency of task offloading schemes in IoT-Fog-Cloud paradigm. Moreover, we also developed a taxonomy for the classification of these schemes and provided a comparative study of different schemes: by identifying achieved advantage and disadvantage of each scheme, as well its related drawbacks and limitations. Moreover, we also state open research issues in the development of energy efficient, scalable, optimized task offloading schemes for Fog computing.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.