• Title/Summary/Keyword: Distortion Estimation

Search Result 345, Processing Time 0.05 seconds

Performance Analysis of Adaptive Channel Estimation Scheme in V2V Environments (V2V 환경에서 적응적 채널 추정 기법에 대한 성능 분석)

  • Lee, Jihye;Moon, Sangmi;Kwon, Soonho;Chu, Myeonghun;Bae, Sara;Kim, Hanjong;Kim, Cheolsung;Kim, Daejin;Hwang, Intae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.8
    • /
    • pp.26-33
    • /
    • 2017
  • Vehicle communication can facilitate efficient coordination among vehicles on the road and enable future vehicular applications such as vehicle safety enhancement, infotainment, or even autonomous driving. In the $3^{rd}$ Generation Partnership Project (3GPP), many studies focus on long term evolution (LTE)-based vehicle communication. Because vehicle speed is high enough to cause severe channel distortion in vehicle-to-vehicle (V2V) environments. We can utilize channel estimation methods to approach a reliable vehicle communication systems. Conventional channel estimation schemes can be categorized as least-squares (LS), decision-directed channel estimation (DDCE), spectral temporal averaging (STA), and smoothing methods. In this study, we propose a smart channel estimation scheme in LTE-based V2V environments. The channel estimation scheme, based on an LTE uplink system, uses a demodulation reference signal (DMRS) as the pilot symbol. Unlike conventional channel estimation schemes, we propose an adaptive smoothing channel estimation scheme (ASCE) using quadratic smoothing (QS) of the pilot symbols, which estimates a channel with greater accuracy and adaptively estimates channels in data symbols. In simulation results, the proposed ASCE scheme shows improved overall performance in terms of the normalized mean square error (NMSE) and bit error rate (BER) relative to conventional schemes.

Quasi-Lossless Fast Motion Estimation Algorithm using Distribution of Motion Vector and Adaptive Search Pattern and Matching Criterion (움직임벡터의 분포와 적응적인 탐색 패턴 및 매칭기준을 이용한 유사 무손실 고속 움직임 예측 알고리즘)

  • Park, Seong-Mo;Ryu, Tae-Kyung;Jung, Yong-Jae;Moon, Kwang-Seok;Kim, Jong-Nam
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.7
    • /
    • pp.991-999
    • /
    • 2010
  • In this paper, we propose a fast motion estimation algorithm for video encoding. Conventional fast motion estimation algorithms have a serious problem of low prediction quality in some frames. However, full search based fast algorithms have low computational reduction ratio. In the paper, we propose an algorithm that significantly reduces unnecessary computations, while keeping prediction quality almost similar to that of the full search. The proposed algorithm uses distribution probability of motion vectors and adaptive search patterns and block matching criteria. By taking different search patterns and error criteria of block matching according to distribution probability of motion vectors, we can reduces only unnecessary computations efficiently. Our algorithm takes only 20~30% in computational amount and has decreased prediction quality about 0~0.02dB compared with the fast full search of the H.264 reference software. Our algorithm will be useful to real-time video coding applications using MPEG-2 or MPEG-4 AVC standards.

Fast block matching algorithm for constrained one-bit transform-based motion estimation using binomial distribution (이항 분포를 이용한 제한된 1비트 변환 움직임 예측의 고속 블록 정합 알고리즘)

  • Park, Han-Jin;Choi, Chang-Ryoul;Jeong, Je-Chang
    • Journal of Broadcast Engineering
    • /
    • v.16 no.5
    • /
    • pp.861-872
    • /
    • 2011
  • Many fast block-matching algorithms (BMAs) in motion estimation field reduce computational complexity by screening the number of checking points. Although many fast BMAs reduce computations, sometimes they should endure matching errors in comparison with full-search algorithm (FSA). In this paper, a novel fast BMA for constrained one-bit transform (C1BT)-based motion estimation is proposed in order to decrease the calculations of the block distortion measure. Unlike the classical fast BMAs, the proposed algorithm shows a new approach to reduce computations. It utilizes the binomial distribution based on the characteristic of binary plane which is composed of only two elements: 0 and 1. Experimental results show that the proposed algorithm keeps its peak signal-to-noise ratio (PSNR) performance very close to the FSA-C1BT while the computation complexity is reduced considerably.

Study on Error Correction of Impact Sound Position Estimation Using Ray Tracing (음선 추적을 이용한 폭발음 위치추정 오차 보정에 대한 연구)

  • Choi, Donghun;Go, Yeong-Ju;Lee, Jaehyung;Na, Taeheum;Choi, Jong-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.1
    • /
    • pp.89-96
    • /
    • 2016
  • TDOA(time delay of arrival) position estimate from acoustic measurement of artillery shell impact is studied in order to develop a targeting evaluation system. Impact position is calculated from the intersections of hyperbolic estimates based on the least square Taylor series method. The mathematical process of Taylor series estimation is known to be robust. However, the concern lays with the accuracy because it is sensitive to the bias caused by the randomness of measurement situation. The measurement error typically occurs from the distortion of waveform, change of travelling path, and sensor position error. For outdoor measurement, a consideration should be made on the atmospheric condition such as temperature and wind which can possibly change the trajectories of rays of sound. It produces wrong propagation time events accordingly. Ray tracing and optimization techniques are introduced in this study to minimize the bias induced by the ray of sound. The numerical simulation shows that the atmospheric correction improves the estimation accuracy.

A Channel estimation for multipath channel and performance of Viterbi equalizer of high speed wireless digital communication (고속 디지털무선통신에 있어서 멀티 패스 채널 추정과 비터비 등화기 의 동작특성)

  • 박종령;박남천;주창복
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.2
    • /
    • pp.53-57
    • /
    • 2002
  • Recently, digital communication system becomes high speed, as communication demand dose not only increases sharply, but an image, voice various kinds data also comes multimedia. In transmitting data at a high speed, the main problem is fading by multipath. A linear or nonlinear distortion arise In multipath channel fading from ISI(Intersymbol Interference). For restoring this distorted signal, A lot of equalizer and adaptive algorithm is introduced. This paper compares and analysises, for improving communication quality in channel which is long delay spread, performance of decision feedback equalizer by RLS algorithm, a channel estimation by RLS-MLSE and viterbi equalizer Particularly, there Is exactly channel estimation of impluse response and excellent property of equalization about channel, which delay spread is long impluse response comparatively and is property of non-minimun phase.

  • PDF

Fast Inter Block Mode Decision Using Image Complexity in H.264/AVC (H.264/AVC에서 영상 복잡도를 이용한 고속 인터 블록 모드 결정)

  • Kim, Seong-Hee;Oh, Jeong-Su
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11C
    • /
    • pp.925-931
    • /
    • 2008
  • In video coding standard H.264/AVC, variable block size mode algorithm improves compression efficiency but has need of a large amount of computation for various block modes and mode decision. Meanwhile, decided inter block modes depend on the complexity of a block image, and then the more complex a macroblock is, the smaller its block size is. This paper proposes fast inter block mode decision algorithm. It limits valid block modes to the block modes with a great chance for decision using the image complexity and carries out motion estimation rate-distortion optimization with only the valid block modes. In addition to that, it applies fast motion estimation PDE to the valid block modes with only the $16{\times}16$ block mode. The reference software JM 9.5 was executed to estimate the proposed algorithm's performance. The simulation results showed that the proposed algorithm could save about 24.12% of the averaged motion estimation time while keeping the image quality and the bit rate to be -0.02dB and -0.12% on the average, respectively.

Indoor Location Estimation and Navigation of Mobile Robots Based on Wireless Sensor Network and Fuzzy Modeling (무선 센서 네트워크와 퍼지모델을 이용한 이동로봇의 실내 위치인식과 주행)

  • Kim, Hyun-Jong;Kang, Guen-Taek;Lee, Won-Chang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.2
    • /
    • pp.163-168
    • /
    • 2008
  • Navigation system based on indoor location estimation is one of the core technologies in mobile robot systems. Wireless sensor network has great potential in the indoor location estimation due to its characteristics such as low power consumption, low cost, and simplicity. In this paper we present an algorithm to estimate the indoor location of mobile robot based on wireless sensor network and fuzzy modeling. ZigBee-based sensor network usually uses RSSI(Received Signal Strength Indication) values to measure the distance between two sensor nodes, which are affected by signal distortion, reflection, channel fading, and path loss. Therefore we need a proper correction method to obtain accurate distance information with RSSI. We develop the fuzzy distance models based on RSSI values and an efficient algorithm to estimate the robot location which applies to the navigation algorithm incorporating the time-varying data of environmental conditions which are received from the wireless sensor network.

Attitude Estimation of Unmanned Vehicles Using Unscented Kalman Filter (무향 칼만 필터를 이용한 무인 운송체의 자세 추정)

  • Song, Gyeong-Sub;Ko, Nak-Yong;Choi, Hyun-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.265-274
    • /
    • 2019
  • The paper describes an application of unscented Kalman filter(UKF) for attitude estimation of an unmanned vehicle(UV), which is equipped with a low-cost attitude heading reference system (AHRS). The roll, pitch and yaw required at the correction stage of the UKF are calculated from the measurements of acceleration and geomagnetic field. The roll and pitch are attributed to the measurement of acceleration, while yaw is calculated from the geomagnetic field measurement. Since the measurement of geomagnetic field is vulnerable to distortion by hard-iron and soft-iron effects, the calculated yaw has more uncertainty than the calculated roll and pitch. To reduce the uncertainty of geomagnetic field measurement, the proposed method estimates bias in the geomagnetic field measurement and compensates for the bias for more accurate calculation of yaw. The proposed method is verified through navigation experiments of a UV in a test pool. The results show that the proposed method yields more accurate attitude estimation; thus, it results more accurate location estimation.

Age Estimation Based on Mandibular Premolar and Molar Development: A Pilot Study

  • Roh, Byung-Yoon;Kim, Eui-Joo;Seo, In-Soo;Kim, Hyeong-Geon;Ryu, Hye-Won;Lee, Ju-Heon;Seo, Yo-Seob;Ryu, Ji-Won;Ahn, Jong-Mo
    • Journal of Oral Medicine and Pain
    • /
    • v.46 no.4
    • /
    • pp.125-130
    • /
    • 2021
  • Purpose: The dental age estimation of children is performed using dental maturity. Postmortem missing of the anterior teeth or the distortion of image of the anterior teeth in panoramic radiographs can make it difficult to analyze the development of the anterior teeth. This pilot study was conducted to derive a new age estimation method based only on the developmental stage of mandibular posterior teeth. Methods: This study was conducted using panoramic radiographs of 650 subjects aged 3 to 15 years old. The dental developmental stages of the lower left first premolar, second premolar, first molar and second molar were evaluated according to the Demirjian's criteria. The intra-/inter-observer reliability was evaluated, and multiple linear regression analyses were performed including the developmental stage of each tooth as an independent variable. Results: The intra-/inter-observer reliability was 0.9626 and 0.8877, respectively, and showed very high reproducibility. Multiple linear regression analyses were performed for males and females, and the age calculation table was derived by obtaining the intercept and the coefficient according to the development stage of each tooth. The coefficient of determination (r2) of the age calculation method was 0.9634 for male and 0.9570 for female subjects, and the mean difference between chronological age and estimated dental age was -0.42 and -0.21, respectively. Conclusions: This pilot study evaluated the developmental stages of four lower posterior teeth in the Korean group according to Demirjian's criteria, and derived age estimation method. The accuracy was lower than when more teeth were used, but it will be useful to estimate age of children when the anterior teeth are difficult to accurately analyze.

Spatio-temporal Mode Selection Methods of Fast H.264 Using Multiple Reference Frames (다중 참조 영상을 이용한 고속 H.264의 움직임 예측 모드 선택 기법)

  • Kwon, Jae-Hyun;Kang, Min-Jung;Ryu, Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.3C
    • /
    • pp.247-254
    • /
    • 2008
  • H.264 provides a good coding efficiency compared with existing video coding standards, H.263, MPEG-4, based on the use of multiple reference frame for variable block size motion estimation, quarter-pixel motion estimation and compensation, $4{\times}4$ integer DCT, rate-distortion optimization, and etc. However, many modules used to increase its performance also require H.264 to have increased complexity so that fast algorithms are to be implemented as practical approach. In this paper, among many approaches, fast mode decision algorithm by skipping variable block size motion estimation and spatial-predictive coding, which occupies most encoder complexity, is proposed. This approach takes advantages of temporal and spatial properties of fast mode selection techniques. Experimental results demonstrate that the proposed approach can save encoding time up to 65% compared with the H.264 standard while maintaining the visual perspectives.