• Title/Summary/Keyword: Distortion Analysis

검색결과 1,392건 처리시간 0.026초

필릿용접에서 리브높이에 따른 용접변형 해석에 대한 연구 (A Study on the Welding Distortion Analysis According to Rib Height in Fillet Welding)

  • 김용래;송규영;왕초;김재웅
    • Journal of Welding and Joining
    • /
    • 제31권6호
    • /
    • pp.107-111
    • /
    • 2013
  • The welding distortion is caused by welding heat in the structures which are widely used in shipbuilding and automotive industries, thus many researchers have proposed such methods to control the welding distortion through trials and numerical studies. The welding distortion has been the main cause of low productivity due to the structural strength degradation, apparent flaw, additional deformation caused by the process followed the current assembly step, and the increase of correction workload. The deformation of fillet welding is investigated in this study, and the influence of the rib height on the welding distortion is verified through the actual experiment. And the numerical analysis model using the FE software MSC.marc for analysis of welding distortion is proposed.

진공 용기 제작시 공정별 변형 예측에 관한 연구 (A Study on the Prediction of Welding Distortion of Vacuum Vessel during Fabrication Process)

  • 이동주;김하근;신상범
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.96-96
    • /
    • 2009
  • The purpose of this study is to clarify the transitional behavior and main factor of excessive welding distortion caused by fabrication process of STS 304 vacuum vessel having double curvature for the efficient quality control of vacuum vessel. In order to do it, the predictive equations of the welding distortion in simple weldment of vacuum vessel were established by conventional finite element analysis. And the principal factor controlling the welding distortion was identified by evaluating the welding distortion of vacuum vessel in each fabrication process with FEA and simplified thermo elastic method. Based on the results, the principal factors of distortion of vacuum vessel were clarified as angular distortion and transverse shrinkage which are a source of excessive out-of plane distortion in the double curved vacuum vessel. It was expected that the FE analysis results of this study could contribute to establish the proper control method of welding distortion for double curved vacuum vessel.

  • PDF

용접변형을 고려한 효율적 공차해석 기법 개발 (Development of an Efficient Method to Consider Weld Distortion in Tolerance Analysis)

  • 임현준;이동열;이재열;권기억;신종계
    • 대한기계학회논문집A
    • /
    • 제29권10호
    • /
    • pp.1377-1383
    • /
    • 2005
  • A general and efficient methodology has been developed to analyze dimensional variations of an assembly, taking into account of weld distortion. Weld distortion is generally probabilistic because of the random nature of welding parameters such as the welding speed, maximum welding temperature, ambient temperature, etc. The methodology is illustrated through a very simple example of two perpendicular plates fillet-welded to each other. Two steps comprise the methodology: establishment of a weld-distortion database, and tolerance analysis using the database. To establish the database, thermo-elasto-plastic finite element analyses are conducted to compute the weld distortion for all combinations of discrete values of major welding parameters. In the second step of tolerance analysis, the weld distortion retrieved from the database is used in addition to the dimensional tolerances of the parts. As a result of such an analysis, sensitivities of the assembly's dimensional variations to the part tolerances and weld distortion are obtained, which can be help improve the dimensional quality of the assembly.

대형 용접구조물의 탄소성 열변형 해석을 위한 용접부의 변형률 경계조건에 관한 연구 (A Study on Weldment Boundary Condition for Elasto-Plastic Thermal Distortion Analysis of Large Welded Structures)

  • 하윤석
    • Journal of Welding and Joining
    • /
    • 제29권4호
    • /
    • pp.48-53
    • /
    • 2011
  • A thermal distortion analysis which takes strains directly as boundary conditions removed barrier of analysis time for the evaluation of welding distortion in a large shell structure like ship block. If the FE analysis time is dramatically reduced, the structure modeling time or the input-value calculating time will become a new issue. On the contrary to this, if the calculation time of analysis input-value is dramatically reduced and its results also are more meaningful, a little longer analysis time could be affirmative. In this study, instead of using inherent strain based on elastic analysis, a thermal strain based on elasto-plastic analysis is used as the boundary condition of weldments in order to evaluate the welding distortion. Here, the thermal strain at the weldment was established by using a stress-strain curve established from the test results. It is possible to automatically recognize the modeling induced-stiffness in the shrinkage direction of welded or heated region. The validity of elasto-plastic thermal distortion analysis was verified through the experiment results with various welding sequence.

온도분포 해석 해와 유한요소법을 이용한 대형 강판의 용접변형 해석 (Analysis of Welding Distortion of Large Steel Plate by Using Analytical Solution of Temperature Distribution and Finite Element Method)

  • 홍성빈;배강열;양영수
    • Journal of Welding and Joining
    • /
    • 제32권4호
    • /
    • pp.69-74
    • /
    • 2014
  • Welding distortions of large steel structures had mainly been estimated with some simplified formula obtained by lots of experience and numerical analyses for small steel structures. However, the large structures would have different characteristics of distortion with welding because of their own stiffness coming from the size itself. Therefore, in order to find some measures for preventing welding distortion of large structure, it is requite in advance to precisely analysis thermal stress and distortion during welding of the structure. Numerical analysis for larger structure has been known to take large amount of calculation time and have a poor convergency problem during the thermo-elasto-plastic calculation. In this study, a hybrid method is proposed to analysis the thermal stress and distortion of a large steel plate with the finite element analysis by incorporating with temperature distribution of the plate calculated by an analytical solution. The proposed method revealed that the thermo-mechanical analysis for welding of the large structure could be performed with a good convergence and produced precise results with much reduced time consumption.

WELDING-INDUCED BUCKLING INSTABILITIES IN THIN PLATES

  • Han, Myoung-Soo;Tsai, Chon-Liang
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.661-667
    • /
    • 2002
  • Welding-induced buckling distortion is one of the most problematic concerns in both design and fabrication of welded thin-plate structures. This paper deals with experimental and numerical results of the welding-induced longitudinal and/or buckling distortion occurring in welding of 6mm-thick AH36 high strength steel plates. Effects of the heat input and the plate size on the distortion were experimentally evaluated for square plates. Bead-on-plate welding was performed with the submerged arc welding process along the middle line of plate specimens. Experimental results showed that the longitudinal distortion made a single curvature in the plate, and the distortion magnitude along the weld centerline was proportional to the heat input and the plate size. The experimental results were used to examine the validity of the numerical simulation procedure for welding-induced distortion where the longitudinal distortion mode and magnitude were numerically quantified. Three-dimensional, large deformation, welding simulations were performed for selected weld models. Numerical results of the distortion mode and magnitude were in a good agreement with experimental ones. Depending on the presence of halting the distortion growth during the cooling cycle of welding, the condition discriminating buckling distortion from longitudinal distortion was established. Eigenvalue analyses were performed to check the buckling instability of tested plates with different sizes subjected to different heat inputs. The perturbation load pattern for the analysis was extracted from longitudinal inherent strain distributions. Critical buckling curve from the eigenvalue analyses revealed that the buckling instability is manifested when plate size or heat input increases.

  • PDF

후판 구조의 각변형 예측 및 제어에 관한 연구 (A Study on the Prediction and Control of Angular Distortion in Thick Weldments)

  • 허주호;김상일
    • Journal of Welding and Joining
    • /
    • 제21권5호
    • /
    • pp.518-524
    • /
    • 2003
  • The block assembly of ship consists of a series of heat processes such as cutting, bending, welding, residual stress relaxation and fairing. With the fast development of computers, the thermal elasto-plastic analysis method has become a versatile tool for practical applications in the ship production. If numerical analysis is proved to be an advantageous tool to predict the residual deformation due to various heat processes, the optimum methods which can remove the welding distortion can be presented at each assembly stage, which will result in great progress in improving the accuracy of block assembly. In order to minimize the weld-induced angular distortion in thick weldments, this paper proposes the optimum groove design for various plate thickness as the distortion control method. The validity of this method has been substantiated by a number of numerical simulations and experiments.

후판 구조의 각변형 예측 및 제어에 관한 연구 (A Study on the Prediction and Control of Angular Distortion in Thick Weldments)

  • 김상일
    • 한국해양공학회지
    • /
    • 제22권6호
    • /
    • pp.100-105
    • /
    • 2008
  • The block assembly of ship consists of a series of heat processes such as cutting, bending, welding residual stress relaxation and fairing With the fast development of computers, the thermal elasto-plastic analysis method has become a versatile tool for practical applications in the ship production. If numerical analysis is proved to be an advantageous tool to predict the residual deformation due to various heat processes, the optimum methods which can remove the welding distortion can be presented at each assembly stage, which will result in great progress in improving the accuracy of block assembly. In order to minimize the weld-induced angular distortion in thick weldments, this paper proposes the optimum groove design for various plate thickness as the distortion control method. The validity of this method has been substantiated by a number of numerical simulations and experiments.

PLASTICITY-BASED WELDING DISTORTION ANALYSIS OF THIN PLATE CONNECTIONS

  • Jung, Gonghyun;Tsai, Chon L.
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.694-699
    • /
    • 2002
  • In autobody assembly, thin-wall, tubular connections have been used for the frame structure. Recent interest in light materials, such as aluminum or magnesium alloys, has been rapidly growing for weight reduction and fuel efficiency. Due to higher thermal expansion coefficient, low stiffness/strength, and low softening temperature of aluminum and magnesium alloys, control of welding-induced distortion in these connections becomes a critical issue. In this study, the material sensitivity to welding distortion was investigated using a T-tubular connection of three types materials; low carbon steel (A500 Gr. A), aluminum alloy (5456-H116) and magnesium alloy (AZ91C-T6). An uncoupled thermal and mechanical finite element analysis scheme using the ABAQUS software program was developed to model and simulate the welding process, welding procedure and material behaviors. The predicted angular distortions were correlated to the cumulative plastic strains. A unique relationship between distortion and plastic strains exists for all three materials studied. The amount of distortion is proportional to the magnitude and distribution of the cumulative plastic strains in the weldment. The magnesium alloy has the highest distortion sensitivity, followed by the other two materials with the steel connection having the least distortion. Results from studies of thin-aluminum plates show that welding distortion can be minimized by reducing the cumulative plastic strains by preventing heat diffusion into the base metal using a strong heat sink placed directly beneath the weld. A rapid cooling method is recommended to reduce welding distortion of magnesium tubular connections.

  • PDF

단조/절삭 베벨기어의 열처리 변형에 관한 연구 (A Study on the Distortion induced by Heat Treatment on Automobile Bevel Gears)

  • 강우진;김명곤;조종래;이정환;이영선;배원병
    • 소성∙가공
    • /
    • 제12권3호
    • /
    • pp.221-227
    • /
    • 2003
  • Heat treatment is widely used in various manufacturing Processes to enhance the quality of a Product such as strength, surface hardness, and service life. In the heat treatment, there is dimensional change or distortion of the product, which critically influences the dimensional accuracy of precision parts. In this study, the distortion of a straight bevel gear induced by heat treatment is investigated in two cases. In the first case, the distortion induced by heat treatment we compared between a forged bevel gear and a machined bevel gear. In the second case, the distortion of an annealed gen is compared with that of a quenched gear. And finite element analysis has been Performed to predict the distortion of a heat-treated and machined bevel gear. The predicted values are compared with the experimental values.