• Title/Summary/Keyword: Distance-regularized Level Set

Search Result 4, Processing Time 0.067 seconds

Contrast-enhanced Bias-corrected Distance-regularized Level Set Method Applied to Hippocampus Segmentation

  • Selma, Tisa;Madusanka, Nuwan;Kim, Tae-Hyung;Kim, Young-Hoon;Mun, Chi-Woong;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1236-1247
    • /
    • 2016
  • Recently, the level set has become a popular method in many research fields. The main reason is that it can be modified into many variants. One such case is our proposed method. We describe a contrast-enhancement method to segment the hippocampal region from the background. However, the hippocampus region has quite similar intensities to the neighboring pixel intensities. In addition, to handle the inhomogeneous intensities of the hippocampus, we used a bias correction before hippocampal segmentation. Thus, we developed a contrast-enhanced bias-corrected distance-regularized level set (CBDLS) to segment the hippocampus in magnetic resonance imaging (MRI). It shows better performance than the distance-regularized level set evolution (DLS) and bias-corrected distance-regularized level set (BDLS) methods in 33 MRI images of one normal patient. Segmentation after contrast enhancement and bias correction can be done more accurately than segmentation while not using a bias-correction method and without contrast enhancement.

Color Object Segmentation using Distance Regularized Level Set (거리정규화 레벨셋을 이용한 칼라객체분할)

  • Anh, Nguyen Tran Lan;Lee, Guee-Sang
    • Journal of Internet Computing and Services
    • /
    • v.13 no.4
    • /
    • pp.53-62
    • /
    • 2012
  • Object segmentation is a demanding research area and not a trivial problem of image processing and computer vision. Tremendous segmentation algorithms were addressed on gray-scale (or biomedical) images that rely on numerous image features as well as their strategies. These works in practice cannot apply to natural color images because of their negative effects to color values due to the use of gray-scale gradient information. In this paper, we proposed a new approach for color object segmentation by modifying a geometric active contour model named distance regularized level set evolution (DRLSE). Its speed function will be designed to exploit as much as possible color gradient information of images. Finally, we provide experiments to show performance of our method with respect to its accuracy and time efficiency using various color images.

CAD Scheme To Detect Brain Tumour In MR Images using Active Contour Models and Tree Classifiers

  • Helen, R.;Kamaraj, N.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.670-675
    • /
    • 2015
  • Medical imaging is one of the most powerful tools for gaining information about internal organs and tissues. It is a challenging task to develop sophisticated image analysis methods in order to improve the accuracy of diagnosis. The objective of this paper is to develop a Computer Aided Diagnostics (CAD) scheme for Brain Tumour detection from Magnetic Resonance Image (MRI) using active contour models and to investigate with several approaches for improving CAD performances. The problem in clinical medicine is the automatic detection of brain Tumours with maximum accuracy and in less time. This work involves the following steps: i) Segmentation performed by Fuzzy Clustering with Level Set Method (FCMLSM) and performance is compared with snake models based on Balloon force and Gradient Vector Force (GVF), Distance Regularized Level Set Method (DRLSE). ii) Feature extraction done by Shape and Texture based features. iii) Brain Tumour detection performed by various tree classifiers. Based on investigation FCMLSM is well suited segmentation method and Random Forest is the most optimum classifier for this problem. This method gives accuracy of 97% and with minimum classification error. The time taken to detect Tumour is approximately 2 mins for an examination (30 slices).

A Comparison of Active Contour Algorithms in Computer-aided Detection System for Dental Cavity using X-ray Image (X선 영상 기반 치아와동 컴퓨터 보조검출 시스템에서의 동적윤곽 알고리즘 비교)

  • Kim, Dae-han;Heo, Chang-hoe;Cho, Hyun-chong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1678-1684
    • /
    • 2018
  • Dental caries is one of the most popular oral disease. The aim of automatic dental cavity detection system is helping dentist to make accurate diagnosis. It is very important to separate cavity from the teeth in the detection system. In this paper, We compared two active contour algorithms, Snake and DRLSE(Distance Regularized Level Set Evolution). To improve performance, image is selected ROI(region of interest), then applied bilateral filter, Canny edge. In order to evaluate the algorithms, we applied to 7 tooth phantoms from incisor to molar. Each teeth contains two cavities of different shape. As a result, Snake is faster than DRLSE, but Snake has limitation to compute topology of objects. DRLSE is slower but those of performance is better.