• Title/Summary/Keyword: Distance-bearing

Search Result 226, Processing Time 0.025 seconds

Effect of Velocity-Pulse-Like Ground Motions on Seismic Fragility of Bridges (교량의 지진취약도에 대한 속도 펄스를 가진 지반운동의 영향)

  • Yeeun Kim;Sina Kong;Sinith Kung;Jiho Moon;Jong-Keol Song
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.2
    • /
    • pp.119-131
    • /
    • 2024
  • Pulse-like ground motion can cause greater damage to structures than nonpulse-like ground motion. Currently, much research is being conducted to determine the presence or absence of velocity pulses and to quantify them from seismic-acceleration records. Existing ground motion is divided into far-field (FF) and near-fault ground motion, based on the distance of the measurement point from the fault. Near-fault ground motion is further classified into near-fault pulse-like (NFP) and near-fault nonpulse-like (NFNP) ground motion by quantifying the presence or absence of velocity pulses. For each ground motion group, 40 FF, 40 NFP, and 40 NFNP ground motions are selected; thus, 120 ground motions are used in the seismic analysis to assess the seismic fragility of sample bridges. Probabilistic seismic demand models (PSDMs) are created by evaluating the seismic responses of two types of sample bridges with lead-rubber and elastomeric rubber bearings using three groups of ground motions. Seismic fragility analysis is performed using the PSDM, and from these results, the effect of the presence or absence of seismic velocity pulses on the seismic fragility is evaluated. From the comparison results of the seismic fragility curve, the seismic fragility of NFP ground motion appears to be approximately three to five times greater than that of NFNP ground motion, according to the presence or absence of a velocity pulse of seismic waves. This means that the damage to the bridge is greater in the case of NFP ground motion than that in the case of NFNP ground motion.

Theoretical analysis of erosion degradation and safety assessment of submarine shield tunnel segment based on ion erosion

  • Xiaohan Zhou;Yangyang Yang;Zhongping Yang;Sijin Liu;Hao Wang;Weifeng Zhou
    • Geomechanics and Engineering
    • /
    • v.37 no.6
    • /
    • pp.599-614
    • /
    • 2024
  • To evaluate the safety status of deteriorated segments in a submarine shield tunnel during its service life, a seepage model was established based on a cross-sea shield tunnel project. This model was used to study the migration patterns of erosive ions within the shield segments. Based on these laws, the degree of deterioration of the segments was determined. Using the derived analytical solution, the internal forces within the segments were calculated. Lastly, by applying the formula for calculating safety factors, the variation trends in the safety factors of segments with different degrees of deterioration were obtained. The findings demonstrate that corrosive seawater presents the evolution characteristics of continuous seepage from the outside to the inside of the tunnel. The nearby seepage field shows locally concentrated characteristics when there is leakage at the joint, which causes the seepage field's depth and scope to significantly increase. The chlorine ion content decreases gradually with the increase of the distance from the outer surface of the tunnel. The penetration of erosion ions in the segment is facilitated by the presence of water pressure. The ion content of the entire ring segment lining structure is related in the following order: vault < haunch < springing. The difference in the segment's rate of increase in chlorine ion content decreases as service time increases. Based on the analytical solution calculation, the segment's safety factor drops more when the joint leaks than when its intact, and the change rate between the two states exhibits a general downward trend. The safety factor shows a similar change rule at different water depths and continuously decreases at the same segment position as the water depth increases. The three phases of "sudden drop-rise-stability" are represented by a "spoon-shaped" change rule on the safety factor's change curve. The issue of the poor applicability of indicators in earlier studies is resolved by the analytical solution, which only requires determining the loss degree of the segment lining's effective bearing thickness to calculate the safety factor of any cross-section of the shield tunnel. The analytical solution's computation results, however, have some safety margins and are cautious. The process of establishing the evaluation model indicates that the secondary lining made of molded concrete can also have its safety status assessed using the analytical solution. It is very important for the safe operation of the tunnel and the safety of people's property and has a wide range of applications.

Assessment of the Cause and Pathway of Contamination and Sustainability in an Abandoned Mine (폐광산 오염원인 분석 및 오염경로, 향후 지속가능성에 대한 평가)

  • Kim, Min Gyu;Kim, Ki-Joon;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.28 no.3
    • /
    • pp.411-429
    • /
    • 2018
  • Daeyoung mine (also called "Daema mine") produced gold and silver from mainly gold- and silver-bearing quartz veins. The mine tailings are a waste hazard, but most of the tailings were swept away or dispersed throughout the area around the mine long before the tailing dump areas were transformed into agricultural land. Soil liner and protection facilities, such as retaining walls, were constructed in the mine area to prevent the loss of tailings. The content of the tailings is 3,424.41~3,803.61 mg/kg, which exceeds the safety standard by a factor of 45. In addition, contamination was detected near agricultural areas and in the sediments in downstream drainage channels. A high level of As contamination was concentrated near the waste tailings yard; comparaable levels were detected in agricultural areas close to streams that ran through the waste dump yard, whereas the levels were much lower in areas far from the streams. The contamination in stream sediments showed a gradual decrease with distance from the mine waste yard. Based on these contamination patterns, we concluded that there are two main paths that affect the spread of contaminants: (1) loss of mine waste, and (2) the introduction of mine waste into agricultural areas by floods after transportation by streams. The agricultural areas contaminated by mass inflow of mine waste can act as contamination sources themselves, affecting other agricultural areas through the diffusion of contaminants. At present, although the measured effect in minimal, sediments in streams are contaminated by exposed mine waste and surface liners. It is possible for contaminants to diffuse or spread into nearby areas if heavy elements trapped in soil grains in contaminated agricultural areas leach out as soil solution or contaminant particles during diffusion into the water supply.

Effect of X-Irradiation on the Levels of some Sulfhydryl Groups, Protein and Cell Volume of Ehrlich Ascites Tumour Cells (X-선(線) 조사(照射)가 Ehrlich 암세포(癌細胞)의 용적(容積), 단백양(蛋白量) 및 수종(數種) Sulfhydryl 기(基)에 미치는 영향(影響)에 관(關)하여)

  • Yu, Choon-Shik;Choo, Young-Eun
    • The Korean Journal of Physiology
    • /
    • v.3 no.2
    • /
    • pp.9-16
    • /
    • 1969
  • It is well known that a number of -SH and -SS containing substances afford a certain measure of protection against radiation effects in many biological systems, and it is conceivable that inherent -SH levels in Ehrlich ascites tumour (ELD)cells may be of decisive improtance with respect to the development of cellular radiation injury. So far, little effort has been directed to elucidate the changes in levels of different -SH and -SS groups in ELD cells when the tumour-bearing whole animal was subjected to the sublethal dose of X-irradiation. The present study was designed to bring some lights in the possible changes of and relationship between various sulfhydryl levels, such as P-SH, NP-SH and NP-SS, as well as the content of protein and cell volume of ELD cells, after subjecting the ELD mice to 1,200 r of X-irradiation. The animals used in this experiment were all mixed bred mice of $20{\sim}25\;gm$ in body weight (approximately 2 months old) irrespective of sex. 12 mice in one experiment were inoculated intraperitoneally with 0.2 ml of ascites tumour cells $(2{\times}10^6\;cells)$, and on the 7th day of the tumour growth, they were X-irradiated with 1,200 r, using the conventional X-ray machine under the following conditions: 200 Kv at 15 mA, 0.5 mm Cu filter, target-skin distance: 50 cm. Radiation dose was measured with the the Philip integrating dosimeter. At 24, 36, 48 and 60 hours after the X-irradiation, the mice were killed by cervical dislocation, and the tumours were taken out. Freshly withdrawn ascites tumours were placed in ice, and immediately the cell concentration was measured with the Coulter Cell Counter (Model B), and the hematocrit of the tumour cells were also determined. Cell volume was thus calculated by the cell concentration and hematocrit value. P-SH content of ELD cells was measured potentiometrically according to the method of Calcutt & Doxey, and NP-SH and NP-SS contents were measured spectrophotometrically by the method described by Ellman. Protein content of ELD cells was determined with the Folin phenol reagent by Lowry et al. Altogether, 48 experimental mice were used, and 12 mice with the only exception of X-irradiation were used as the control. Results obtained indicate that the contents of all the cellular sulfhydryl groups as well as cell volume and protein content of the ELD cells increase significantly as time progresses after the sub-lethal X-ray dose of 1,200 r was given and that all the increase is in a lineal fashion. The regression lines of the relative values, (i. e., taking each control value as 1) of all the values obtained, and the regression lines of cell volume, protein and NP-SH are identical, whereas those of NP-SS and P-SH appear to be widely seperated. However, the difference of those two lines (NP-SS & P-SH) were found to be not significant statistically (p>0.05). Therefore, it can be concluded from the above results that all the values examined increase in a lineal fashion with no statistically significant difference among them. Also, with the radiation dose of 1,200 r, the ELD cell becomes enlarged and swollen progressively up to 60 hours post-irradiation and it becomes more than two times of the original normal size at 60 hours after the irradiation, and up to this stage, it seems apparent that the cell division has been slow due to the X-irradiation applied in this experiment. It is well understandable that the contents of NP-SH, NP-SS, P-SH and protein of the ELD cells increase in parallel with the increase of the cell volume by the X-ray does used, but it also seems interesting to note that all the cellular substances tested show no appreciable difference in the pattern of increase.

  • PDF

Distribution, Preservation Characteristics of Land and River Natural Aggregates in Nonsan City, Korea (논산시 하천 및 육상 골재 자원의 부존 현황과 특성)

  • Hyun Ho Yoon;Sei Sun Hong;Min Han;Jin-Young Lee
    • Economic and Environmental Geology
    • /
    • v.57 no.2
    • /
    • pp.143-159
    • /
    • 2024
  • Natural aggregate is an essential resource for human activities, closely related to construction. The aggregate demand has been increasing annually, and due to the nature of the resource, it is difficult to procure from distant locations. This study identifies the distribution and characteristics of aggregate-bearing areas as part of a municipal-level aggregate resource survey conducted in Nonsan City, Korea, in 2023. Nonsan City is located approximately 35 km straight distance from the Geum River estuary and lies at the passageway of the main stream of the Geum River. The topography of Nonsan City features eastern mountainous areas and western plains, creating an east-high-west-low geomorphic setting, with 33 streams distributed across the city, including tributaries of the Geum River like Nonsan Stream, Noseong Stream, and Ganggyeong Stream. All streams originate from the highlands in the north and east, converge with Nonsan Stream, and then join the west bank of the main stream of the Geum River at the western boundary of Nonsan City. Drilling core results show shallow depths in the highlands to the north and east, deepening towards the west, reaching a maximum depth of 25 m near the main stream of the Geum River. The total reserve of land aggregates is calculated to be 246,789,000 m3, with a developable amount of 172,750,000 m3. The total reserve of river aggregates is 5,236,000 m3, with a developable amount of 3,765,000 m3. The distribution of aggregates varies according to the geomorphic, geologic, and development pattern of the river system. Reserves are scarce in mountainous areas but are abundant in regions with rivers and wide alluvial plains, although reserves appear at depths greater than 4m. The distribution of aggregate resources in Nonsan City is influenced by stream activities and sea level changes, with the tidal range of the Yellow Sea acting as an unfavorable condition for the preservation of aggregate resources.

Ecological Changes of Insect-damaged Pinus densiflora Stands in the Southern Temperate Forest Zone of Korea (I) (솔잎혹파리 피해적송림(被害赤松林)의 생태학적(生態学的) 연구(研究) (I))

  • Yim, Kyong Bin;Lee, Kyong Jae;Kim, Yong Shik
    • Journal of Korean Society of Forest Science
    • /
    • v.52 no.1
    • /
    • pp.58-71
    • /
    • 1981
  • Thecodiplosis japonesis is sweeping the Pinus densiflora forests from south-west to north-east direction, destroying almost all the aged large trees as well as even the young ones. The front line of infestation is moving slowly but ceaselessly norhwards as a long bottle front. Estimation is that more than 40 percent of the area of P. densiflora forest has been damaged already, however some individuals could escapes from the damage and contribute to restore the site to the previous vegetation composition. When the stands were attacked by this insect, the drastic openings of the upper story of tree canopy formed by exclusively P. densiflora are usually resulted and some environmental factors such as light, temperature, litter accumulation, soil moisture and offers were naturally modified. With these changes after insect invasion, as the time passes, phytosociologic changes of the vegetation are gradually proceeding. If we select the forest according to four categories concerning the history of the insect outbreak, namely, non-attacked (healthy forest), recently damaged (the outbreak occured about 1-2 years ago), severely damaged (occured 5-6 years ago), damage prolonged (occured 10 years ago) and restored (occured about 20 years ago), any directional changes of vegetation composition could be traced these in line with four progressive stages. To elucidate these changes, three survey districts; (1) "Gongju" where the damage was severe and it was outbroken in 1977, (2) "Buyeo" where damage prolonged and (3) "Gochang" as restored, were set, (See Tab. 1). All these were located in the south temperate forest zone which was delimited mainly due to the temporature factor and generally accepted without any opposition at present. In view of temperature, the amount and distribution of precipitation and various soil factor, the overall homogeneity of environmental conditions between survey districts might be accepted. However this did not mean that small changes of edaphic and topographic conditions and microclimates can induce any alteration of vegetation patterns. Again four survey plots were set in each district and inter plot distance was 3 to 4 km. And again four subplots were set within a survey plot. The size of a subplot was $10m{\times}10m$ for woody vegetation and $5m{\times}5m$ for ground cover vegetation which was less than 2 m high. The nested quadrat method was adopted. In sampling survey plots, the followings were taken into account: (1) Natural growth having more than 80 percent of crown density of upper canopy and more than 5 hectares of area. (2) Was not affected by both natural and artificial disturbances such as fire and thinning operation for the past three decades. (3) Lower than 500 m of altitude (4) Less than 20 degrees of slope, and (5) Northerly sited aspect. An intensive vegetation survey was undertaken during the summer of 1980. The vegetation was devided into 3 categories for sampling; the upper layer (dominated mainly by the pine trees), the middle layer composed by oak species and other broad-leaved trees as well as the pine, and the ground layer or the lower layer (shrubby form of woody plants). In this study our survey was concentrated on woody species only. For the vegetation analysis, calculated were values of intensity, frequency, covers, relative importance, species diversity, dominance and similarity and dissimilasity index when importance values were calculated, different relative weights as score were arbitrarily given to each layer, i.e., 3 points for the upper layer, 2 for the middle layer and 1 for the ground layer. Then the formula becomes as follows; $$R.I.V.=\frac{3(IV\;upper\;L.)+2(IV.\;middle\;L.)+1(IV.\;ground\;L.)}{6}$$ The values of Similarity Index were calculated on the basis of the Relative Importance Value of trees (sum of relative density, frequency and cover). The formula used is; $$S.I.=\frac{2C}{S_1+S_2}{\times}100=\frac{2C}{100+100}{\times}100=C(%)$$ Where: C = The sum of the lower of the two quantitative values for species shared by the two communities. $S_1$ = The sum of all values for the first community. $S_2$ = The sum of all values for the second community. In Tab. 3, the species composition of each plot by layer and by district is presented. Without exception, the species formed the upper layer of stands was Pinus densiflora. As seen from the table, the relative cover (%), density (number of tree per $500m^2$), the range of height and diameter at brest height and cone bearing tendency were given. For the middle layer, Quercus spp. (Q. aliena, serrata, mongolica, accutissina and variabilis) and Pinus densiflora were dominating ones. Genus Rhodedendron and Lespedeza were abundant in ground vegetation, but some oaks were involved also. (1) Gongju district The total of woody species appeared in this district was 26 and relative importance value of Pinus densiflora for the upper layer was 79.1%, but in the middle layer, the R.I.V. for Quercus acctissima, Pinus densiflora, and Quercus aliena, were 22.8%, 18.7% and 10.0%, respectively, and in ground vegetation Q. mongolica 17.0%, Q. serrata 16.8% Corylus heterophylla 11.8%, and Q. dentata 11.3% in order. (2) Buyeo district. The number of species enumerated in this district was 36 and the R.I.V. of Pinus densiflora for the uppper layer was 100%. In the middle layer, the R.I.V. of Q. variabilis and Q. serrata were 8.6% and 8.5% respectively. In the ground vegetative 24 species were counted which had no more than 5% of R.I.V. The mean R.I.V. of P.densiflora ( totaling three layers ) and averaging four plots was 57.7% in contrast to 46.9% for Gongju district. (3) Gochang-district The total number of woody species was 23 and the mean R.I.V. of Pinus densiflora was 66.0% showing greater value than those for two former districts. The next high value was 6.5% for Q. serrata. As the time passes since insect outbreak, the mean R.I.V. of P. densiflora increased as the following order, 46.9%, 57.7% and 66%. This implies that P. densiflora was getting back to its original dominat state again. The pooled importance of Genus Quercus was decreasing with the increase of that for Pinus densiflora. This trend was contradict to the facts which were surveyed at Kyonggi-do area (the central temperate forest zone) reported previously (Yim et al, 1980). Among Genus Quercus, Quercus acutissina, warm-loving species, was more abundant in the southern temperature zone to which the present research is concerned than the central temperate zone. But vice-versa was true with Q. mongolica, a cold-loving one. The species which are not common between the present survey and the previous report are Corpinus cordata, Beltala davurica, Wisturia floribunda, Weigela subsessilis, Gleditsia japonica var. koraiensis, Acer pseudosieboldianum, Euonymus japonica var. macrophylla, Ribes mandshuricum, Pyrus calleryana var. faruiei, Tilia amurensis and Pyrus pyrifolia. In Figure 4 and Table 5, Maximum species diversity (maximum H'), Species diversity (H') and Eveness (J') were presented. The Similarity indices between districts were shown in Tab. 5. Seeing Fig. 6, showing two-dimensional ordination of polts on the basis of X and Y coordinates, Ai plots aggregate at the left site, Bi plots at lower site, and Ci plots at upper-right site. The increasing and decreasing patterns as to Relative Density and Relative Importance Value by genus or species were given in Fig. 7. Some of the patterns presented here are not consistent with the previously reported ones (Yim, et al, 1980). The present authors would like to attribute this fact that two distinct types of the insect attack, one is the short war type occuring in the south temperate forest zone, which means that insect attack went for a few years only, the other one is a long-drawn was type observed at the temperate forest zone in which the insect damage went on continuously for several years. These different behaviours of infestation might have resulted the different ways of vegetational change. Analysing the similarity indices between districts, the very convincing results come out that the value of dissimilarity index between A and B was 30%, 27% between B and C and 35% between A and C (Table 6). The range of similarity index was obtained from the calculation of every possible combinations of plots between two districts. Longer time isolation between communities has brought the higher value of dissimilarity index. The main components of ground vegetation, 10 to 20 years after insect outbreak, become to be consisted of mainly Genus Lespedeza and Rhododendron. Genus Quercus which relate to the top dorminant state for a while after insect attack was giving its place to Pinus densiflora. It was implied that, provided that the soil fertility, soil moisture and soil depth were good enough, Genus Quercuss had never been so easily taken ever by the resistant speeies like Pinus densiflora which forms the edaphic climax at vast areas of forest land. Usually they refer Quercus to the representative component of the undisturbed natural forest in the central part of this country.

  • PDF