• Title/Summary/Keyword: Distance to obstacles

Search Result 287, Processing Time 0.026 seconds

Gaze Recognition Interface Development for Smart Wheelchair (지능형 휠체어를 위한 시선 인식 인터페이스 개발)

  • Park, S.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.5 no.1
    • /
    • pp.103-110
    • /
    • 2011
  • In this paper, we propose a gaze recognition interface for smart wheelchair. The gaze recognition interface is a user interface which recognize the commands using the gaze recognition and avoid the detected obstacles by sensing the distance through range sensors on the way to driving. Smart wheelchair is composed of gaze recognition and tracking module, user interface module, obstacle detector, motor control module, and range sensor module. The interface in this paper uses a camera with built-in infra red filter and 2 LED light sources to see what direction the pupils turn to and can send command codes to control the system, thus it doesn't need any correction process per each person. The results of the experiment showed that the proposed interface can control the system exactly by recognizing user's gaze direction.

Gait Planning of Quadruped Walking and Climbing Robot in Convex Corner Environment

  • Loc, Vo Gia;Kang, Tae-Hun;Song, Hyun-Sup;Choi, Hyouk-Ryeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.314-319
    • /
    • 2005
  • When a robot navigates in the real environment, it frequently meets various environments that can be expressed by simple geometrical shapes such as fiat floor, uneven floor, floor with obstacles, slopes, concave or convex corners, etc. Among them, the convex corner composed of two plain surfaces is the most difficult one for the robot to negotiate. In this paper, we propose a gait planning algorithm to help the robot overcome the convex environment. The trajectory of the body is derived from the maximum distance between the edge boundary of the corner and the bottom of the robot when it travels in the convex environment. Additionally, we find the relation between kinematical structure of the robot and its ability of avoiding collision. The relation is realized by considering the workspace and the best posture of the robot in the convex structure. To provide necessary information for the algorithm, we use an IR sensor attached in the leg of the robot to perceive the convex environment. The validity of the gait planning algorithm is verified through simulations and the performance is demonstrated using a quadruped walking robot, called "MRWALLSPECT III"( Multifunctional Robot for WALL inSPECTion version 3).

  • PDF

A Modified Residual-based Extended Kalman Filter to Improve the Performance of WiFi RSSI-based Indoor Positioning (와이파이 수신신호세기를 사용하는 실내위치추정의 성능 향상을 위한 수정된 잔차 기반 확장 칼만 필터)

  • Cho, Seong Yun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.684-690
    • /
    • 2015
  • This paper presents a modified residual-based EKF (Extended Kalman Filter) for performance improvement of indoor positioning using WiFi RSSI (Received Signal Strength Indicator) measurement. Radio signal strength in indoor environments may have irregular attenuation characteristics due to obstacles such as walls, furniture, etc. Therefore, the performance of the RSSI-based positioning with the conventional trilateration method or Kalman filter is insufficient to provide location-based accurate information services. In order to enhance the performance of indoor positioning, in this paper, error analysis of the distance calculated by using the WiFi RSSI measurement is performed based on the radio propagation model. Then, an IARM (Irregularly Attenuated RSSI Measurement) error is defined. Also, it shows that the IARM error is included in the residual of the positioning filter. The IARM error is always positive. So, it is presented that the IARM error can be estimated by taking the absolute value of the residual. Consequently, accurate positioning can be achieved based on the IEM (IARM Error Mitigated) EKF with the residual modified by using the estimated IARM error. The performance of the presented IEM EKF is verified experimentally.

Strategies of Collision Avoidance with Moving and Stationary Human Obstacles during Walking (보행 시 인간 장애물의 동적·정적 상태에 따른 충돌회피전략)

  • Lee, Yeon-Jong;Kim, Joo-Nyeon
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.2
    • /
    • pp.97-104
    • /
    • 2019
  • Objective: The aim of this study was to investigate the strategies for avoiding moving and stationary walker using body segments during walking. Method: Ten healthy young adults (10 males, age: $24.40{\pm}0.49yrs$, height: $175.80{\pm}5.22cm$, body mass: $70.30{\pm}5.22kg$) participated in this study. Each participant was asked to perform a task to avoid collisions with another walker who was moving or stationary during walking on the 10 m walkway. Both walkers were performed at natural self-selected walking speed. Results: Medio-lateral avoidance displacement of the trunk and the pelvis were significantly increased when avoiding a stationary walker (p<.05). There were no significant differences in medio-lateral center of mass trajectory. Rotation angle of trunk, pelvis and foot on the vertical axis were significantly increased when avoiding a stationary walker (p<.05). Conclusion: Based on our results, when another walker moves continuously, the walker recognizes another walker as the object of social interaction and performs the avoidance strategies while expecting the cooperative distance. On the other hand, when another walker is stopped, it is determined that the walker has an obligation to avoid, and the walker performs a relatively safer avoidance strategy.

Evaluating Psychological Experiences of Saudi Students in Distance-Learning

  • Almaleki, Deyab A.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.7
    • /
    • pp.173-181
    • /
    • 2021
  • The Ministry of Education in Saudi Arabia encourages Saudi students to continue their education at Saudi universities or abroad. Currently, an estimated 1,282,140 Saudi students are studying at Saudi universities. The extent of the research so far has not focused on Saudi student experiences, but it has shown that even a single negative event can dramatically reduce the chances of a student completing a degree. Thus, more research is necessary to identify and describe the context and obstacles (environmental and psychological) that Saudi students face. The evaluation was multifaceted to capture not only performance outcomes, but also other factors that have been suggested by research as influential to students' ability, such as the environmental, cultural, and psychological risks for graduation that Saudi students self-report. A single group pretest (survey) design was used in this study. Findings suggest depression stress and college stress predict stress levels, while subjective happiness predicts levels of scientific participations of the sample. Moreover, depression stress shows more consistency with hours spent on the internet for study purposes. These results should be considered in study support programs both institutionally and geopolitically by universities and governments.

Location Estimation for Multiple Targets Using Expanded DFS Algorithm (확장된 깊이-우선 탐색 알고리듬을 적용한 다중표적 위치 좌표 추정 기법)

  • Park, So Ryoung;Noh, Sanguk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.12
    • /
    • pp.1207-1215
    • /
    • 2013
  • This paper proposes the location estimation techniques of distributed targets with the multi-sensor data perceived through IR sensors of the military robots in consideration of obstacles. In order to match up targets with measured azimuths, to add to the depth-first search (DFS) algorithms in free-obstacle environment, we suggest the expanded DFS (EDS) algorithm including bypass path search, partial path search, middle level ending, and the supplementation of decision metric. After matching up targets with azimuths, we estimate the coordinate of each target by obtaining the intersection point of the azimuths with the least square error (LSE) algorithm. The experimental results show the error rate of estimated location, mean number of calculating nodes, and mean distance between real coordinates and estimated coordinates of the proposed algorithms.

Optimal Geometric Path and Minimum-Time Motion for a Manipulator Arm (로봇팔의 최적 기하학적 경로 및 시간최소화 운동)

  • Park, Jong-Keun;Han, Sung-Hyun;Kim, Tae-Han;Lee, Sang-Tak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.204-213
    • /
    • 1999
  • This paper suggests a numerical method of finding optimal geometric path and minimum-time motion for a manipulator arm. To find the minimum-time motion, the optimal geometric path is searched first, and the minimum-time motion is searched on this optimal path. In the algorithm finding optimal geometric path, the objective function is minimizing the combination of joint velocities, joint-jerks, and actuator forces as well as avoiding several static obstacles, where global search is performed by adjusting the seed points of the obstacle models. In the minimum-time algorithm, the traveling time is expressed by the linear combinations of finite-term quintic B-splines and the coefficients of the splines are obtained by nonlinear programming to minimize the total traveling time subject to the constraints of the velocity-dependent actuator forces. These two search algorithms are basically similar and their convergences are quite stable.

  • PDF

Front and Rear Vehicle Monitoring System using Ultrasonic Sensors (초음파 센서를 이용한 차량 전·후방 감시 시스템)

  • Choi, Hun;Jang, Si-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.6
    • /
    • pp.1125-1132
    • /
    • 2012
  • The researches on driver assistance systems that can prevent an accident have been actively performed due to social issues of traffic accidents with development of vehicle industry in recent. It is required for researchers to develope systems which assist driver's perception and judgment when considering that over 70% of traffic accidents occur by drivers' carelessness and 75% of the total accidents occur at the speed of less 29km per hour. In this paper, we implemented a front and rear vehicle monitoring system that monitors distance from a vehicle to obstacles in real-time at the low-speed or back-ward driving. The proposed system consists of ultrasonic sensors of high angle and wide angle of beam spread, ATmega128, and DSP processor.

Collision-free path planning for an articulated robot (다관절 로보트를 위한 충돌 회피 경로 계획)

  • 박상권;최진섭;김동원
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1995.04a
    • /
    • pp.629-634
    • /
    • 1995
  • The purpose of this paper is to develop a method of Collision-Free Path Planning (CFPP) for an articulated robot. First, the configuration of the robot is formed by a set of robot joint angles derived fromm robot inverse kinematics. The joint space that is made of the joint angle set, forms a Configuration space (Cspace). Obstacles in the robot workcell are also transformed and mapped into the Cspace, which makes Cobstacles in the Cspace. (The Cobstacles represented in the Cspace is actually the configurations of the robot causing collision.) Secondly, a connected graph, a kind of roadmap, is constructed from the free configurations in the 3 dimensional Cspace, where the configurations are randomly sampled form the free Cspace. Thirdly, robot paths are optimally in order to minimize of the sum of joint angle movements. A path searching algorithm based on A is employed in determining the paths. Finally, the whole procedures for the CFPP method are illustrated with a 3 axis articulated robot. The main characteristics of the method are; 1) it deals with CFPP for an articulated robot in a 3-dimensional workcell, 2) it guarantees finding a collision free path, if such a path exists, 3) it provides distance optimization in terms of joint angle movements. The whole procedures are implemented by C on an IBM compatible 486 PC. GL (Graphic Library) on an IRIS CAD workstation is utilized to produce fine graphic outputs.

  • PDF

Slope and Roughness Extraction Method from Terrain Elevation Maps (지형 고도 맵으로부터 기울기와 거칠기 추출 방법)

  • Jin, Gang-Gyoo;Lee, Hyun-Sik;Lee, Yun-Hyung;So, Myung-Ok;Shin, Ok-Keun;Chae, Jeong-Sook;Lee, Young-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.9
    • /
    • pp.909-915
    • /
    • 2008
  • Recently, the interests in the development and application of unmaned robots are increasing in various fields including surveillance and reconnaissance, planet exploration, and disaster relief. Unmaned robots are usually controlled from distance using radio communications but they should be equipped with an autonomous travelling function to cope with unexpected terrains and obstacles. This means that they should be able to evaluate terrain's characteristics quantitatively using mounted sensors so as to traverse harsh natural terrains autonomously. For this purpose, this paper presents a method for extracting terrain information, that is, slope and roughness from elevation maps as a prior step of traversability analysis. Slope is extracted using the curve fitting based on the least squares method and roughness using three metrics and their weighted average. The effectiveness of the proposed method is verified on both a fractal map and the world model map of a real terrain.