• Title/Summary/Keyword: Distance between tip and specimen

Search Result 12, Processing Time 0.025 seconds

A Study on the Cutting Surface Characteristics in CNC Gas Cutting of Plate Steel (강판의 CNC 가스 절단시 절단면특성에 관한 연구)

  • 김성일
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.1
    • /
    • pp.24-31
    • /
    • 2003
  • In the gas cutting of plate steel, the quality of the cut surfaces and sections is strongly dependent on the cutting conditions such as cutting speed, kerf width, plate thickness, material, distance between tip and specimen, and cutting oxygen pressure etc. The cutting tests of plate steel were carried out using CNC gas cutting machine. This paper deals with cut surface and section characteristics of plate steel in CNC gas cutting. Both top and bottom widths of kerf, the surface roughness(Ra, Rmax) of cutting surfaces are measured under various cutting conditions such as cutting speed, material, distance between tip and specimen, and cutting thickness. The photographs of cut surface and cut section are also analyzed under various cutting conditions.

Study on 3-Dimensional Fracture Behavior of Material (재료의 3차원 파괴거동에 대한 연구 (변위일정하의 관통균열인 경우))

  • Park, J.D.;Jang, Y.S.;Lyu, H.L.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.11 no.1
    • /
    • pp.13-22
    • /
    • 1991
  • In this paper, 3-dimensional fracture phenomena in the local area near a through notch tip located between the surface and the canter were investigated by using embedded dyeing grids with the pitch of $50.8{\mu}$. It was confirmed that displacement V and square root of distance from notch tip $y^{1/2}$ are not proportional in the local area of $\sqrt{{\mid}y{\mid}}\;<\;0.3mm^{1/2}$ and the maximum shea strain ${\varepsilon}_{xymax}$ near a notch tip occurred at the curvature beginning point of the notch curve. It was also noted that the maximum strain ${\varepsilon}_{xymax}$ in the thickness direction occurred at the interior, where the ratio of the distance measured from surface to the half of thickness of specimen is 0.3.

  • PDF

A Study On Fatigue Properties Of BeCu Thin Film For Probe Tip (프루브 팁용 BeCu 박막의 피로성질 연구)

  • Shin, Myung-Soo;Park, Jun-Hyub;Seo, Jeong-Yun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.256-259
    • /
    • 2008
  • An micro-probe tip must be manufactured using thin film to evaluate integrity of the semiconductor with narrow distance between pads. In this study, fatigue tests were performed for BeCu thin film which is used in micro-probe tip of semiconductor test machine. The thin film was manufactured by electro plating process, and the specimens were fabricated by wire-cut electric discharge method to make hour glass type specimen of $5000{\mu}m$ width, $29200{\mu}m$ length and $30{\mu}m$ thickness. The fatigue test of load control with 10Hz frequency was performed, in ambient environment. The fatigue cycles were tension-tension with mean stress, at stress ratio, R=0.1.

  • PDF

A Study on the Cutting Phenomena in CNC Gas Cutting Under Various Cutting Conditions (고장력 강판의 CNC 가스 절단시 절단조건 변화에 따른 절단현상에 관한 연구)

  • 김성일
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.186-191
    • /
    • 2002
  • In the CNC gas cutting of steel plate, the cutting quality are strongly dependent on the various cutting conditions. The cutting tests of high tensile steel plate(AH36) were carried out using CNC gas cutting machine at various cutting conditions such as cutting speed, steel plate thickness, distance between tip and specimen etc. The kerf width and the surface roughness of cutting surfaces are examined. The photographs of cutting surface and cutting section are also analyzed.

  • PDF

A Study on the Various Characteristics of Ultrasonic-Energy-Added W/O Type Emulsified Fuel ( I ) - attaching importance to stability and spray characteristics - (초음파에너지 조사 W/O type 유화연료의 제반특성에 관한 연구(I) - 안정성 및 분무특성을 중심으로 -)

  • Kim, Yong-Cheol;Song, Yong-Sik;Ryu, Jeong-In
    • Journal of ILASS-Korea
    • /
    • v.9 no.3
    • /
    • pp.22-28
    • /
    • 2004
  • This study is concerned about the characteristics of ultrasonic-energy-added W/O type emulsified fuel. The distilled water was mixed with diesel oil by using ultrasonic energy fuel feeding system and then the SMD of sprayed droplets was measured to find out atomization characteristics of emulsified fuel by using the Malvern 2600 system. The capacitance value was measured to verify stability of the same specimen by using the digital LCR meter, EDC1630 additionally. The main results are as follows; 1) The more measuring distance increases between one hole nozzle tip and analyser bearm, the more SMD increases. 2) The more water content increases, the more capacitance value increases depending on the time. Main Parameters of the study are the amount of water content $0{\sim}30%$ by 5% in emulsified fuel, and the measurement distance, $20{\sim}140mm$ by 10mm or 20mm between nozzle tip and analyser beam.

  • PDF

An Investigation of High Temperature Creep Phenomena by the Method of Caustics (코스틱스방법을 이용한 고온 크리프 파괴현상에 관한 연구)

  • 이억섭;홍성경
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2543-2553
    • /
    • 1994
  • Caustics method has been applied successfully to determine the fracture parameters such as stress intensity factor and the J-integral for elastic and/or elastic-plastic stress field around the crack tip. For stress fields at the vicinity of crack tip in the creep domain, no experimental report concerning fracture mechanics parameters by using the caustics method has been published up to date. This study investigated creep behavior at the vicinity of crack tips at high temperature($175^{\circ}C$) and attempted to determine of proper fracture parameters for A1 5086 H24 specimens by using the caustics method. The results obtained from the limited experimental investigation are as follows; $J_{th}/J_{caus}$ is found to approach to 1 more rapidly than $K_{th}/K_{caus}$ does during incipient period(within 80 minutes). It is confirmed that experimental $K_{caus}$ approached to theoretical $K_{th}$ after 80 minutes by analyzing the ratio of $K_{th}$ to $K_{caus}$. Unlike the case of room temperature, it is confirmed experimentally that caustics diameter enlarged gradually even the distance between specimen and screen keeps constant. It showed that initial curve of the caustics was initially located in the plastic zone, but it grew out rapidly into the elastic zone for Al 5086 H24 at $175^{\circ}C$. It is confirmed that caustics is a function of time, temperature and distance between specimen and screen at high temperature.

Evaluation of Durability for Al Alloy with Anodizing Condition (알루미늄 합금의 양극산화 조건에 따른 내구성 평가)

  • Lee, Seung-Jun;Han, Min-Su;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.152-152
    • /
    • 2016
  • Anodizing is a technology to generate thicker and high-quality films than natural oxide films by treating metals via electrochemical methods. It is a technique to develop metals for various uses, and extensive research on the commercial use has been performed for a long time. Aluminum anodic oxide (AAO) is generate oxide films, whose sizes and characteristics depending on the types of electrolytes, voltages, temperatures and time. Electrochemical manufacturing method of nano structure is an efficient technology in terms of cost reduction, high productivity and complicated shapes, which receives the spotlight in diverse areas. The sulfuric acid was used as an anodizing electrolyte, controlling its temperature to $10^{\circ}C$. The anode was 5083 Al alloy with dimension of $5(t){\times}20{\times}20mm$ while the cathode was the platinum. The distance between the anode and the cathode was maintained at 3 cm. Agitation was introduced by magnetic stirrer at 300 rpm to prevent localized temperature rise that hinders stable growth of oxide layer. In order to observe surface characteristics with applied current density, the electrolyte temperature, concentration was maintained at constant condition for $10^{\circ}C$, 10 vol.%, respectively. To prevent hindrance of stable growth of oxide layer due to local temperature increase during the experiment, stirring was maintained at constant rate. In addition, using galvanostatic method, it was maintained at current density of $10{\sim}30mA/cm^2$ for 40 minutes. The cavitation experiment was carried out with an ultrasonic vibratory apparatus using piezo-electric effect with modified ASTM-G32. The peak-to-peak amplitude was $30{\mu}m$ and the distance between the horn tip and specimen was 1 mm. The specimen after the experiment was cleaned in an ultrasonic, dried in a vacuum oven for more than 24 hours, and weighed with an electric balance. The surface damage morphology was observed with 3D analysis microscope. As a result of the investigation, differences were observed surface hardness and anti-cavitation characteristics depending on the development of oxide film with applied current density.

  • PDF

Evaluation of Life Span for Al2O3 Nano Tube Formed by Anodizing with Current Density

  • Lee, Seung-Jun;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.148-148
    • /
    • 2017
  • Surface modification is a type of mechanical manipulation skills to achieve extensive aims including corrosion control, exterior appearance, abrasion resistance, electrical insulation and electrical conductivity of substrate materials by generating a protective surface using electrical, physical and chemical treatment on the surface of parts made from metallic materials. Such surface modification includes plating, anodizing, chemical conversion treatment, painting, lining, coating and surface hardening; this study conducted cavitation experiment to assess improvement of durability using anodizing. In order to observe surface characteristics with applied current density, the electrolyte temperature, concentration was maintained at constant condition. To prevent hindrance of stable growth of oxide layer due to local temperature increase during the experiment, stirring was maintained at constant speed. In addition, using galvanostatic method, it was maintained at processing time of 40minutes for 10 to $30mA/cm^2$. The cavitation experiment was carried out with an ultra sonic vibratory apparatus using piezo-electric effect with modified ASTM-G32. The peak-to-peak amplitude was $30{\mu}m$ and the distance between the horn tip and specimen was 1mm. The specimen after the experiment was cleaned in an ultrasonic bath, dried in a vacuum oven for more than 24 hours, and weighed with an electric balance. The surface damage morphology was observed with 3D analysis microscope. As a result of the study, differences were observed surface hardness and anti-cavitation characteristics depending on the development of oxide film with the anodizing process time.

  • PDF

A Study on the Cutting Surfaces in CNC Plasma Cutting of high tensile steel plate (고장력 강판의 CNC Plasma 절단시 절단면에 관한 연구)

  • 김인철;김성일
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.149-154
    • /
    • 2003
  • The cutting tests of high tensile steel plate(AH36) were carried out using CNC plasma arc cutting machine. Both top and bottom width of kerf and the surface roughness(Ra, Rmax) of cut surface are measured under various cutting conditions such as cutting speed, steel plate thickness, etc. In the CNC plasma arc cutting, the surface roughness decreases as cutting speed increases. The hardness is high up to 4mm depth from the cutting surface. In the cutting speed 1300~2100mm/min, the ratio of proper kerf width(Wt/Wb) is around 2.6. Through the series the series of experiments, the satisfactory cutting conditions of high tensile steel plate were found.

  • PDF

The Effect of Finger Joint Location on Bending Strength Properties (핑거접합부의 위치가 휨강도성능에 미치는 영향)

  • Won, Kyung-Rok;Hong, Nam-Euy;Ryu, Hyun-Soo;Park, Han-Min;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.4
    • /
    • pp.318-326
    • /
    • 2013
  • The effect of finger joint location and distance from joint to joint one another on 3 point mid-concentration bending strength properties was investigated in this experiment. Resorcinol-phenol formaldehyde (RPF) and aqueous vinyl urethane (AVU) was used to domestic Pinus densiflora Sieb. et Zucc and imported Picea sitchensis Carr. that have been cut to different width of 0.15 mm between finger tip and root width and the distance from loading point to finger joint was 0, 30, 40, 50, 60 mm. The effect was not found on the location and distance of finger joint for bending modulus of elasticity, while the efficiency of bending strength property increased proportionally as the location of finger joint from the load point and the distance between finger joint increased. No influence was shown by finger joint location and distance beyond 3 times of specimen thickness, since similar values were shown between the solid wood and no destruction occurred materials.