• Title/Summary/Keyword: Distance accuracy

Search Result 1,692, Processing Time 0.026 seconds

A Study on Measurement System Accuracy of Theodolite System(IV) - A Measurement System Accuracy depending on a Distance of Scale Bar on the Distance 4m between two Theodolites (데오드라이트 시스템의 측정 정확도에 대한 연구(IV) - 시준거리 4m에서의 기준자 거리에 따른 측정 정도)

  • Yoon Yong-Sik;Lee Dong-Ju;Park Yo-Chang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.3
    • /
    • pp.67-73
    • /
    • 2005
  • An accuracy of theodolite system may be affected by a measurement environment and a measurement distance change from theodolite to scale bar and/or targets. This study was performed for measuring an accuracy when the distance from thodolite system to scale bar was changed $2\~6m$ on the distance 4m between two theodolites. The results showed that an accuracy was ${\pm}0.025mm$ or better when the distance from theodolite system to targets was 3, 4 and 5m. According to the results, it was found that the best distance from theodolite system to scale bar was $3\~4m$ when the collimation distance was $3\~4m$.

A Study on Measurement Accuracy of Theodolite System(III) - A Measurement System Accuracy depending on a Distance of Scale Bar on the Distance 3 m between two Theodolites (데오드라이트 시스템의 측정 정확도에 대한 연구(III) - 시준거리 3 m에서 기준자 거리에 따른 측정 정도)

  • Yoon Yong Sik;Lee Dong Ju;Yoon In Jin
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.2
    • /
    • pp.48-54
    • /
    • 2005
  • The theodolite system consists of two theodolites, a scale bar and a target bu. A measurement accuracy of theodolite system is affected by a measurement distance of each equipment. This study was performed fir measuring an accuracy when the distance from theodolite to scale bar was changed 2~ 6 m on two theodolites distance 3 a The results showed thai the measurement accuracy could be $\pm$0.021 mm when the distance from theodolite to target was 2,3 and 6 n Specially, it was found that the maximum measurement accuracy was 10.017mm on theodolite collimation distance 3m and the distance 4 m of the theodolite and scale bar.

A Study on Measurement Accuracy of A Theodolite System(V) - A Measurement System Accuracy depending on the distance from theodolite system to target Bars (데오드라이트 시스템의 측정 정확도에 대한 연구(V) - 타켓 바의 거리에 따른 측정 정확도)

  • Yoon Yong-Sik;Lee Dong-Ju
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.4
    • /
    • pp.13-21
    • /
    • 2005
  • The affected factors for an accuracy of theodolite system are not only the measurement environment of temperature, illumination, etc. but also the measurement processes of the distance between two theodolites, the distance from theodolite system to scale bar and the distance from theodolite system to targets. We have known that the best collimation distance between two theodolites and the best distance from theodolite system to scale bar is $3{\sim}4m$. This study was performed for searching the best distance from theodolite system to targets on above measurement configuration. And, we could know that the best distance from theodolite system to targets is $2{\sim}6m$ and the system accuracy could be within ${\pm}0.025mm$.

Accuracy Improvement of Stereo-Based Distance Measurement for Close Range Vessel Positioning

  • Ogura, Tadashi;Mizuchi, Yoshiaki;Kim, Young-Bok;Choi, Yong-Woon
    • Journal of Power System Engineering
    • /
    • v.19 no.2
    • /
    • pp.27-32
    • /
    • 2015
  • This paper describes a distance measurement system with high accuracy that utilizes a stereo-based camera and a pan-tilt unit for automatically maintaining the positional relationship between a vessel and a target on the side of a facility at a close range. The measurement system offers an advantage in that it can measure the distance to a target while tracking it. In order to improve the ability to control the position of a vessel between it and a target while maintaining the distance especially at a close range, the accuracy of the measurement system has to be improved. The accuracy of the distance measured by our system is increased with revisions of the conclusively generated data of distance measurement. We verified the accuracy of our system from an experiment, which generated results that had an accuracy of 30 mm for distances in the range between 2-8 m.

Analysis of Distance Measurement Accuracy in Aerial and Satellite Image Photogrammetry (항공사진측량과 위성영상측량에서 거리측정 정확도 연구)

  • Kim, Hyung-Moo;Tcha, Dek-Kie;Nam, Guon-Mo;Yang, Chul-Soo
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.253-255
    • /
    • 2010
  • Needs to study on distance measurement accuracy in aerial and satellite photogrammetry are rapidly increased. However, conventional studies show some confused definitions between measurement accuracy and measurement precision as well as standard deviation(STDEV) and root mean square error(RMSE or RMSD). So, Finite definitions of measurement accuracy and measurement precision as well as STDEV and RMSD are addressed in this paper. Experiment result show using correct definitions improve the distance measurement accuracy in aerial and satellite photogrammetry rapidly, but not the distance measurement accuracy in aerial and satellite photogrammetry.

  • PDF

A Study on Measurement Accuracy of Theodolite System( I ) - A Measurement Accuracy According to a Theodolite Collimations Distance (데오도라이트 시스템의 측정 정확도에 대한 연구( I ) - 데오도라이트 시준 거리에 따른 측정 정확도)

  • 윤용식;이동주
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.2
    • /
    • pp.61-68
    • /
    • 2004
  • A non-contact precision measurement system is a theodolite system, a laser tacker and a photogrammetry system etc. Nowadays, the system reaches to a limit of measurement accuracy required from industrial product of middle and large scale. The one of the solutions for this problem is to maximize the accuracy of the existing measurement system. According to it we performed the study far a measurement accuracy of theodolite system when the distance between two theodolites is changed 1m to 5m. We could blow that the changes of distance affect the measurement accuracy of theodolite system and that the maximum measurement accuracy is $\pm$ 0.02 mm on theodolite distance 3∼4 m.

Development of a Virtual Reference Station-based Correction Generation Technique Using Enhanced Inverse Distance Weighting

  • Tae, Hyunu;Kim, Hye-In;Park, Kwan-Dong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.2
    • /
    • pp.79-85
    • /
    • 2015
  • Existing Differential GPS (DGPS) pseudorange correction (PRC) generation techniques based on a virtual reference station cannot effectively assign a weighting factor if the baseline distance between a user and a reference station is not long enough. In this study, a virtual reference station DGPS PRC generation technique was developed based on an enhanced inverse distance weighting method using an exponential function that can maximize a small baseline distance difference due to the dense arrangement of DGPS reference stations in South Korea, and its positioning performance was validated. For the performance verification, the performance of the model developed in this study (EIDW) was compared with those of typical inverse distance weighting (IDW), first- and second-order multiple linear regression analyses (Planar 1 and 2), the model of Abousalem (1996) (Ab_EXP), and the model of Kim (2013) (Kim_EXP). The model developed in the present study had a horizontal accuracy of 53 cm, and the positioning based on the second-order multiple linear regression analysis that showed the highest positioning accuracy among the existing models had a horizontal accuracy of 51 cm, indicating that they have similar levels of performance. Also, when positioning was performed using five reference stations, the horizontal accuracy of the developed model improved by 8 ~ 42% compared to those of the existing models. In particular, the bias was improved by up to 27 cm.

Precision Evaluation of Three-dimensional Feature Points Measurement by Binocular Vision

  • Xu, Guan;Li, Xiaotao;Su, Jian;Pan, Hongda;Tian, Guangdong
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.30-37
    • /
    • 2011
  • Binocular-pair images obtained from two cameras can be used to calculate the three-dimensional (3D) world coordinate of a feature point. However, to apply this method, measurement accuracy of binocular vision depends on some structure factors. This paper presents an experimental study of measurement distance, baseline distance, and baseline direction. Their effects on camera reconstruction accuracy are investigated. The testing set for the binocular model consists of a series of feature points in stereo-pair images and corresponding 3D world coordinates. This paper discusses a method to increase the baseline distance of two cameras for enhancing the accuracy of a binocular vision system. Moreover, there is an inflexion point of the value and distribution of measurement errors when the baseline distance is increased. The accuracy benefit from increasing the baseline distance is not obvious, since the baseline distance exceeds 1000 mm in this experiment. Furthermore, it is observed that the direction errors deduced from the set-up are lower when the main measurement direction is similar to the baseline direction.

A Long Range Accurate Ultrasonic Distance Measurement System by Using Period Detecting Method (주기인식 검출방식을 이용한 장거리 정밀 초음파 거리측정 시스템 개발)

  • Lee, Dong-Hwal;Kim, Su-Yong;Yoon, Kang-Sup;Lee, Man-Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.8 s.197
    • /
    • pp.41-49
    • /
    • 2007
  • In this paper, we proposed a new ultrasonic distance measurement system with high accuracy and long range. To improve accuracy and enlarge range, the time of flight of ultrasonic is calculated by the period detecting method. In the proposed ultrasonic distance measurement system, the ultrasonic transmitter and receiver are separated but synchronized by RF(Radio frequency) module. The experiment has been implemented from short distance 1m to maximum available distance 30m. And the period detecting method is compared with the conventional threshold level method. Experimental results show the accuracy and range of the distance measurement are improved by this period detecting method.

High-Accuracy Coastdown Test Method by Distance-Time Measurement: II. Development of a Short Distance Method and its Evaluation (거리·시간 측정에 의한 고정도 타행시험법: II. 단거리 방법의 개발 및 시험)

  • Hur, N.G.;Ahn, I.K.;Petrushov, V.A.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.1-8
    • /
    • 1995
  • In the companion paper of the present paper, a coast down test method to determine the resistance forces on running vehicle based on the distance-time measurement was explained along with the suggestions to improve its accuracy and testing methodology. In the present paper some of the suggestions discussed previously are implemented and actually road tested to see the applicability of the improved method(short distance method) in the field. From the results. it is shown that the short distance method which requires only 600m long proving ground road gives at least comparable results on the accuracy compared to the original S-t method which requires 2000m. It is hoped that the present method be further refiend to give more accurate results.

  • PDF