• Title/Summary/Keyword: Distance Sensing

Search Result 500, Processing Time 0.027 seconds

Stage System for LCD Exposure Equipment Using Touch-type Displacement Sensor (접촉형 변위센서를 이용한 LCD노광기용 스테이지 시스템)

  • Yim, Kwang-Kuk;Seo, Hwa-Il;Cho, Hyun-Chan;Kim, Kwang-Sun;Kang, Heung-Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.1 s.18
    • /
    • pp.7-10
    • /
    • 2007
  • In an effort to reduce weaknesses of existing laser displacement sensor-based system, a sensing device for distance and balance of mask-substrate gap using touch-type displacement sensor was suggested. The device suggested in this study is expected to solve the problems of prices and reflections, by means of a touch-type sensor. LCD exposure equipment stage system including suggested sensing device was realized to assess the characteristics of sensing the balance and gap between mask and substrate. It was verified that a touch-type displacement sensor-based device to adjust the balance and distance of mask-substrate gap suggested in this study can be applicable to LCD expose equipment in practice.

  • PDF

Data Terminal for Metal Detection Application in Hazardous Environment (내환경성 금속인식 정보단말기에 관한 연구)

  • Choi, Kyoo-Nam
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.5
    • /
    • pp.1183-1188
    • /
    • 2011
  • The novel metal position detection method is proposed where conventional techniques, in high temperature, moisture and particle environment, are not able to be applied. It is known that electronic devices, utilizing microwave, ultrasonic or optical technique, are hard to apply for sensing application where temperature is exceeding above 300 degree centigrade. Metal position detection technique, which was consisted with passive elements facing hot sensing surface, utilizing electromagnetic wave was investigated, and the metal detection sensitivity was measured by varying sensor frequency and sensing distance. Measurement result in laboratory test set-up showed position measurement resolution up to 1mm, when distance between two sensing elements were 500mm, and possibility to measure position of hot metal sheet having very high surface temperature.

Realization for Moving Object Sensing and Path Tracking System using Stereo Line CCDs (스테레오 라인 CCD를 이용한 이동객체감지 및 경로추적 시스템 구현)

  • Ryu, Kwang-Ryol;Kim, Young-Bin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.11
    • /
    • pp.2050-2056
    • /
    • 2008
  • A realization for moving object sensing and tracking system in two dimensional plane using stereo line CCDs and lighting source is presented in this paper. The system is realized that instead of processing camera images directly, two line CCD sensor and input line image is used to measure two dimensional distance by comparing the brightness on line CCDs. The algorithms are used the moving object sensing, path tracking and coordinate converting method. To ensure the effective detection of moving path, a detection algorithm to evaluate the reliability of each measured distance is developed. The realized system results are that the performance of moving object recognizing shows 5mm resolution, and enables to track a moving path of object per looms period.

VISIBLE/NEAR-IR REFLECTANCE SPECTROSCOPY FOR THE CLASSIFICATION OF POULTRY CARCASSES

  • Chen, Yud-Ren
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.403-412
    • /
    • 1993
  • This paper presents the progress of the development of a nondestructive technique for the classification of normal, septicemic , and cadaver poultry carcasses by the Instrumentation and Sensing Laboratory at Beltsville, Maryland, U.S.A. The Sensing technique is based on the diffuse reflectance spectroscopy of poultry carcasses.

  • PDF

Health Monitoring for Large Structures using Brillouin Distributed Sensing

  • Thevenaz, L.;Chang, KT.;Nikles, M.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.6
    • /
    • pp.421-430
    • /
    • 2005
  • Brillouin time-domain analysis in optical fibres is a novel technique making possible a distributed measurement of temperature and strain over long distance and will deeply modify our view about monitoring large structures, such as dams, bridges, tunnels and pipelines, Optical fibre sensing will certainly be a decisive tool for securing dangerous installations and detecting environmental and industrial threats.

PARALLAX ADJUSTMENT FOR REALISTIC 3D STEREO VIEWING OF A SINGLE REMOTE SENSING IMAGE

  • Kim, Hye-Jin;Choi, Jae-Wan;Chang, An-Jin;Yu, Ki-Yun
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.452-455
    • /
    • 2007
  • 3D stereoscopic viewing of large scale imagery, such as aerial photography and satellite images, needs different parallaxes relative to the display scale. For example, when a viewer sees a stereoscopic image of aerial photography, the optimal parallax of its zoom-in image should be smaller than that of its zoom-out. Therefore, relative parallax adjustment according to the display scale is required. Merely adjusting the spacing between stereo images is not appropriate because the depths of the whole image are either exaggerated or reduced entirely. This paper focuses on the improving stereoscopic viewing with a single remote sensing image and a digital surface model (DSM). We present the parallax adjustment technique to maximize the 3D realistic effect and the visual comfort. For remote sensing data, DSM height value can be regarded as disparity. There are two possible kinds of methods to adjust the relative parallax with a single image performance. One is the DSM compression technique: the other is an adjustment of the distance between the original image and its stereo-mate. In our approach, we carried out a test to evaluate the optimal distance between a single remote sensing image and its stereo-mate, relative to the viewing scale. Several synthetic stereo-mates according to certain viewing scale were created using a parallel projection model and their anaglyphs were estimated visually. The occlusion of the synthetic stereo-mate was restored by the inpainting method using the fields of experts (FoE) model. With the experiments using QuickBird imagery, we could obtain stereoscopic images with optimized parallax at varied display scales.

  • PDF

The Simple Wakeup Scheduling Protocols Considering Sensing Coverage in Wireless Sensor Networks (무선 센서 네트워크에서 센싱 커버리지를 고려한 Wake-up 스케줄링 프로토콜)

  • Cho, Jae-Kyu;Kim, Gil-Soo;Kwon, Tae-Kyoung;Choi, Yang-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1A
    • /
    • pp.41-49
    • /
    • 2009
  • A crucial issue in deploying wireless sensor networks is to perform a sensing task in an area of interest in an energy-efficient manner since sensor nodes have limited energy Power. The most practical solution to solve this problem is to use a node wake-up scheduling protocol that some sensor nodes stay active to provide sensing service, while the others are inactive for conserving their energy In this paper, we present a simple wake-up scheduling protocol, which can maintain sensing coverage required by applications and yet increase network lifetime by turning off some redundant nodes. In order to do this, we use the concept of a weighted average distance. A node decides whether it is active or inactive based on the weighted average distance. The proposed protocol allows sensor nodes to sleep dynamically while satisfying the required sensing coverage.

Radar Data Correction for Long Distance Observation In Coastal Zone (해안지역 내 원거리 레이더관측자료의 보정에 관한 연구)

  • Ricardo S. TENORIO;Byung-Hyuk Kwon;Hong-Joo Yoon;Dong-In Lee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.5
    • /
    • pp.985-996
    • /
    • 2000
  • In the coastal zone, to draw up short and medium range weather forecasts, mesoscale pluviogenic systems coming from the sea have to be observed in real time. These observations use remote sensing. However, satellite remote sensing is not sufficient to describe pluviogenic systems; reference to radar long distance observations is indispensable. This paper deals with the corrections, which must be made to long distance radar data if the rainfall field is to be both accurately and quantitatively defined. The error due to vertical variation in the reflectivity factor can be corrected from estimation of the mean profiles or by a climatic adjustment method. Atten-uation in the propagation can be corrected by an iterative polarimetric method. These various correc-tions permit the distance validity limits of radar data to be extended.

  • PDF

Accuracy Analysis of Satellite Imagery in Road Construction Site Using UAV (도로 토목 공사 현장에서 UAV를 활용한 위성 영상 지도의 정확도 분석)

  • Shin, Seung-Min;Ban, Chang-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.753-762
    • /
    • 2021
  • Google provides mapping services using satellite imagery, this is widely used for the study. Since about 20 years ago, research and business using drones have been expanding. Pix4D is widely used to create 3D information models using drones. This study compared the distance error by comparing the result of the road construction site with the DSM data of Google Earth and Pix4 D. Through this, we tried to understand the reliability of the result of distance measurement in Google Earth. A DTM result of 3.08 cm/pixel was obtained as a result of matching with 49666 key points for each image. The length and altitude of Pix4D and Google Earth were measured and compared using the obtained PCD. As a result, the average error of the distance based on the data of Pix4D was measured to be 0.68 m, confirming that the error was relatively small. As a result of measuring the altitude of Google Earth and Pix4D and comparing them, it was confirmed that the maximum error was 83.214m, which was measured using satellite images, but the error was quite large and there was inaccuracy. Through this, it was confirmed that there are difficulties in analyzing and acquiring data at road construction sites using Google Earth, and the result was obtained that point cloud data using drones is necessary.

Illumination Variations in Near-Equatorial Orbit Imaging: A Case Study with Simulated Data of RAZAKSAT

  • Hassan, Aida-Hayati-Mohd;Hashim, Mazlan;Arshad, Ahmad-Sabirin
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1052-1054
    • /
    • 2003
  • RAZAKSAT is a second micro-satellite mission by Malaysian Satellite Program and is expected for launch in June 2004. Designed to orbit the earth at low-equatorial orbit, RAZAKSAT will meet Malaysia’s immediate needs to rapid data acquisition (real time and more repetitions) to address many operational issues of remote sensing applications, which require availability of current data sets. RAZAKSAT will be among the first remote sensing satellite to orbit the earth at low inclination along the equator, 9$^{\circ}$ with 685km altitude, hence, allows optimal geographical information and environment change within equatorial region be observed with a unique revisit characteristics. The satellite primary payload is MAC, a push-broom type camera with 2.5m of ground sampling distance (GSD) in panchromatic band and 5m of GSD in four multi-spectral bands. This paper describes on the variation of illumination anticipated from simulated RAZAKSAT image, examine its implication to its ground leaving radiances for major applications.

  • PDF