• Title/Summary/Keyword: Distance Measuring System

Search Result 447, Processing Time 0.034 seconds

Timing Jitter Analysis and Improvement Method using Single-Shot LiDAR system (Single-Shot LiDAR system을 이용한 Timing Jitter 분석 및 개선 방안)

  • Han, Mun-hyun;Choi, Gyu-dong;Song, Min-hyup;Seo, Hong-seok;Mheen, Bong-ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.172-175
    • /
    • 2016
  • Time of Flight(ToF) LiDAR(Light Detection And Ranging) technology has been used for distance measurement and object detection by measuring ToF time information. This technology has been evolved into higher precision measurement field such like autonomous driving car and terrain analysis since the retrieval of exact ToF time information is of prime importance. In this paper, as a accuracy indicator of the ToF time information, timing jitter was measured and analyzed through Single-Shot LiDAR system(SSLs) mainly consisting of 1.5um wavelength MOPA LASER, InGaAs Avalanche Photodiode(APD) at 31M free space environment. Additionally, we applied spline interpolation and multiple-shot averaging method on measured data through SSLs to improve ToF timing information.

  • PDF

A Study on the Technology Development of User-based Home Automation Service (사용자 위치기반 홈오토메이션 서비스 기술 개발에 관한 연구)

  • Lee, Jung-Gi;Lee, Yeong-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.327-332
    • /
    • 2017
  • As Internet of Things (IoT) technology advances, there is a growing demand for location-based services (LBSs) to identify users' mobility and identity. The initial LBS system was mainly used to measure position information by measuring the phase of a signal transmitted from a global positioning system (GPS) satellite or by measuring distance to a satellite by tracking the code of a carrier signal. However, the use of GPS satellites is ineffective, because it is difficult to receive satellite signals indoors. Therefore, research on wireless communications systems like ultra-wide band (UWB), radio frequency identification (RFID), and ZigBee are being actively pursued for location recognition technology that can be utilized in an indoor environment. In this paper, we propose an LBS system that includes the 2.45GHz band for chirp spread spectrum (CSS), and the 3.1-10.6GHz band and the 250-750MHz bands for UWB using the IEEE 802.15.4a standard for low power-based location recognition. As a result, we confirmed that the 2.45GHz Industrial, Scientific and Medical (ISM) band RF transceiver and the ranging function can be realized in the hardware and has 0dBm output power.

A study on the Traffic Density Collect System using View Synthesis and Data Analysis (영상정합을 이용한 교통밀도 수집방법과 수집 데이터 비교분석)

  • Park, Bumjin;Roh, Chang-gyun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.5
    • /
    • pp.77-87
    • /
    • 2018
  • Traffic Density is the most important of the three primary macroscopic traffic stream parameters, because it is most directly related to traffic demand(Traffic Engineering, 2004). It is defined as the number of existing vehicles within a given distance at a certain time. However, due to weather, road conditions, and cost issues, collecting density directly on the field is difficult. This makes studies of density less actively than those of traffic volume or velocity. For these reasons, there is insufficient attempts on divers collecting methods or researches on the accuracy of measured values. In this paper, we used the 'Density Measuring System' based on the synthesise technology of several camera images as a method to measure density. The collected density value by the 'Density Mesuring System' is selected as the true value based on the density define, and this value was compared with the density calculated by the traditional measurement methods. As a result of the comparison, the density value using the fundamental equation method is the closest to the true value as RMSE shows 1.8 to 2.5. In addition, we investigated some issues that can be overlooked easily such as the collecting interval to be considered on collecting density directly by calculating the moment density and the average density. Despite the actual traffic situation of the experiment site is LOS B, it is difficult to judge the real traffic situation because the moment density values per second are observed max 16.0 (veh/km) to min 2.0 (veh/km). However, the average density measured for 15 minutes at 30-second intervals was 8.3-7.9 (veh/km) and it indicates precisely LOS B.

A Study on the Image-Based Luminance Measurement System Using the Measuring Position (측정 위치를 고려한 영상기반 휘도측정시스템에 관한 연구)

  • Sun, Eun-Hey;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.4
    • /
    • pp.424-429
    • /
    • 2014
  • In this paper, an image-based luminance measurement system(LMS) is proposed to measure the luminance of outdoor signboards. We design the LMS that can improve disadvantages of efficiency of the point-luminance meter and portability of face-luminance meter using the image of DSLR camera and print out the luminance value by using the proposed luminance analysis algorithm in real time. Outdoor signboards have various size and shape, and are also installed on the various place. Luminance of the signboard is influenced by measurement location, angle, color, etc. Therefore, we measure the change of luminance value in accordance with measurement location for accurate luminance measurement and then consider the luminance value according to the measurement distance. We obtain a numerical relation between luminance value and measurement location. The proposed LMS is verified through comparative experiment with point-luminance meter.

Zigbee Communication Based Wireless System for Measuring Lap Time on a Sprints (지그비 통신에 기반한 단거리 육상경기 기록측정 시스템)

  • Jeong, Seung-Hyun;Choi, Deuk-sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.86-89
    • /
    • 2018
  • This paper introduces a ZigBee network-based four-lane lap time measurement system that can be set up for short-distance races. The instructions "Ready-Set-Go" can be announced at the entry point node when the start button is pushed, and foot switches installed at the exit point node can be stepped on by the runner for lap time measurement of the race. The start and exit point nodes are connected to a ZigBee network to communicate time synchronization packets. The exit point node maintains synchronized local time within 10 ms at most. The system does not need expensive measurement equipment and provides lap time recording in a more convenient manner than conventional lap time measurement methods.

Indoor Environment Control System Utilizing The Internet of Things (사물인터넷을 활용한 실내 환경 제어 시스템)

  • An, Yoon-Jung;Kim, Dong-Hyeok;Lee, Jee-Hyun;Lee, Boong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.4
    • /
    • pp.645-650
    • /
    • 2017
  • It is a system that controls temperature, humidity and fine-dust to make interior environment more comfortable for modern people who spend 90% of the time in indoor. In an experiment of finding which one of temperature and humidity influence more to discomfort index, for a fixed temperature of 21, discomfort index increased by 0.1 with a 1 change of humidity, and for a fixed humidity of 40, discomfort index increased by 1.2 with a 1 change of temperature. As a result, it was found that the temperature is more influential than the humidity to discomfort index. In an experiment of measuring communicational limitation of Bluetooth, the communication was possible for at most 30 meters without obstacles. With high obstacles like walls or steel bars, it was able to penetrate at most 2 obstacles and maximum distance which it can communicate was 10 meters for just one high molecule obstacle.

Development of the Field Investigation System (FIS) loading Image Data for Digital Forest Type Mapping (수치임상도 제작을 위한 영상탑재 현장조사 시스템 개발)

  • Yoo, Byungoh;Kwon, Sudeok;Kim, Sungho
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.4
    • /
    • pp.445-451
    • /
    • 2008
  • This study was carried out to develop Tablet PC based customizing system for fine mapping of forest cover type. The major contents and characteristics of FIS developed in this study were as follows. Field Investigation System (FIS) has a merit of accessibility to display exact location in various spatial data with position information received from the GPS. FIS can be used to record and manage many field information on which field investigation is done, with the help of the memo tool, field-sheet tool, calculating distance and area with measuring tool as well as editing forest type. It is possible to do field investigation effectively using FIS developed in this study. Accordingly, investigation and time costs can be reduced and field-work productivity will be improved.

The characteristics of DROS magnetometer and MCG measurement (DROS 자력계의 동작특성 및 심자도 측정)

  • Kang, C.S.;Lee, Y.H.;Kwon, H.;Kim, J.M.;Yu, K.K.;Park, Y.K.;Lee, S.G.
    • Progress in Superconductivity
    • /
    • v.8 no.2
    • /
    • pp.164-168
    • /
    • 2007
  • We developed a SQUID magnetometer based on Double Relaxation Oscillation SQUID(DROS) for measuring magnetocardiography(MCG). Since DROS provides a 10 times larger flux-to-voltage transfer coefficient than the conventional DC-SQUID, simple flux-locked loop electronics could be used for SQUID operation. Especially, we adopted an external feedback to eliminate the magnetic coupling with adjacent channels. When the DROS magnetometer was operated inside a magnetically shielded room, average magnetic field noise was about 5 $fT/^{\surd}Hz$ at 100 Hz. Using the DROS magnetometer, we constructed a multichannel MCG system. The system consisted of 61 magnetometers are arranged in a hexagonal structure and measures a vertical magnetic-field component to the chest surface. The distance between adjacent channels is 26 mm and the magnetometers cover a circular area with a diameter of 208 mm. We recorded the MCG signals with this system and confirmed the magnetic field distribution and the myocardinal current distribution.

  • PDF

The Implemention of RTD-l000A based on ARM Microcontroller (ARM 마이크로컨트롤러 기반 RTD-1000A의 구현)

  • Kim, Min-Ho;Hong, In-Sik
    • Journal of Internet Computing and Services
    • /
    • v.9 no.6
    • /
    • pp.117-125
    • /
    • 2008
  • With increase of concern about the Ubiquitous application, the necessity of the computer system which is miniaturized is becoming larger. The ARM processor is showing a high share from embedded system market. In this paper, ideal method for RTD-1000 controller construction and development is described using ARM microcontroller. Existing RTD-1000 measures distance of disconnection or defect of sensing casket by measuring receiving reflected wave which was sent via copper wire inside the leaking sensing rod. Using this RTD-1000, leakage and breakage of water and oil pipe can be sensed and it reports damage results to the networks. But, existing RTD-1000 wastes hardware resources much and costs a great deal to installation. Also, it needs a cooling device because the heating problem, and has some problem of the secondary memory unit such as the hard disk. So, long tenn maintenance has some problems in the outside install place. In this paper, for the resolving the problem of RTD-1000, RTD-1000A embedded system based on ARM is proposed and simulated.

  • PDF

Influence of Freezing Process on the Change of Ice Crystal Size and Freeze-Drying Rate in a Model System (모델 시스템에서 동결속도에 따른 얼음 결정체의 크기 및 동결건조속도의 변화)

  • Byun, Myung-Hee;Choi, Mi-Jung;Lee, Sung;Min, Sang-Gi
    • Food Science of Animal Resources
    • /
    • v.18 no.2
    • /
    • pp.164-175
    • /
    • 1998
  • The objective of this study was to investigate the effects of freezing rate on ice crystal size and freeze-drying rate. Our experiments were carried out with self-manufactured freeze-dryer. Gelatin gels (2% w / w, 80$\times$20mm) were frozen unidirectionally (Neumann's model) from the bottom at -45, -30, -20, and -15$^{\circ}C$ and followed with freeze-drying. Under the upper conditions we measured freezing rate and the change of temperature and pressure during freeze drying. Freeze-dried gelatins were cut horizontally into 5 mm thickness from the bottom and measured their pore sizes. Also freeze-drying rate(primary drying) is estimated by measuring the temperature of sample and pressure of vacuum chamber. During freeze-drying, profiles of pressure and temperature were shown constant tendency regardless of freezing temperature and we could expect the end-point of freeze drying by considering pressure and temperature together. In temperature profiles, the point which temperature increased significantly was observed during freeze-drying. There is no relationship between freeze temperature and drying rate of primary drying in our model system. As freezing temperature increased, ice crystal size(X*) which correspond to 63.2% of cumulative frequency was increased and at the same freezing temperature ice crystal size(X*) was decreased with distance from the bottom of the sample. Freezing conditions have a strong influence on the quality of the final freeze-dried products in freeze-drying system.

  • PDF