• Title/Summary/Keyword: Distance Measuring System

Search Result 447, Processing Time 0.023 seconds

A Design of Real-time Automatic Focusing System for Digital Still Camera Using the Passive Sensor Error Minimization (수동 센서의 오차 최소화를 이용한 실시간 DSC 자동초점 시스템 설계)

  • Kim, Geun-Seop;Kim, Deok-Yeong;Kim, Seong-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.5
    • /
    • pp.203-211
    • /
    • 2002
  • In this paper, the implementation of a new AF(Automatic Focusing) system for a digital still camera is introduced. The proposed system operates in real-time while adjusting focus after the measurement of distance to an object using a passive sensor, which is different from a typical method. In audition, measurement errors were minimized by using the data acquired empirically, and the optimal measuring time was obtained using EV(Exposure Value) which is calculated from CCD luminance signal. Moreover, this system adopted an auxiliary light source for focusing in absolute dark conditions, which is very hard for CCD image Processing. Since this is an open-loop system adjusting focus immediately after the distance measurement, it guarantees real-time operation. The performance of this new AF system was verified by comparing the focusing value curve obtained from AF experiment with the one from the measurement by MF(Manual-Focusing). In both case, edge detector was used for various objects and backgrounds.

A Study on the LED-based Media Transmission Mechanics VLC System Module and Efficiency (LED 조명 기반 미디어 전송기법 가시광통신 시스템 모듈 설계 및 효율 연구)

  • Lee, Jun-myung;Kwon, Jae-hyun;Choi, Jung-won;Park, Keon-Jun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.1
    • /
    • pp.51-56
    • /
    • 2013
  • In this paper, we had design the module of the LED-based media transmission mechanics visible light communication system. To implement the media transmission system through visible light communication transmitter, receiver module the using high brightness, we proposed visible light communication system to implement communication distance of up to a maximum transmitter-receiver distance using a variable PD sensor to the receiver and 1~12 the LED light-emitting device to the transmitter. It was increased efficiency of approximately 20% by measuring the performance during lens wearing or not wearing on the LED module to improve the efficiency of the media transmission system.

Radiation-training system with a custom survey-meter mock-up in a browser-based mixed reality environment

  • Hiroyuki Arakawa;Toshioh Fujibuchi;Kosuke Kaneko;Yoshihiro Okada;Toshiko Tomisawa
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2428-2435
    • /
    • 2024
  • Training for radiation protection and control requires a visual understanding of radiation, which cannot be perceived by the human senses. Trainees must also master the effective use of measuring instruments. Traditionally, such training has exposed trainees to radiation sources. Here, we present a novel e-training strategy that enables safe, exposure-free handling of a radiation measuring tool called a survey meter. Our mixed reality radiation-training system merges the physical world with a digital one. Collaborating with a mixed reality headset (HoloLens 2), this system constructs a mock-up of a survey meter in real-world space. The HoloLens 2 employs a browser-based application to visualize radiation and to simulate/share the use of the survey meter, including its physical movements. To provide a dynamic learning experience, the system adjusts the survey-meter mock-up readings according to the operator's movements, distance from the radiation source, the response time of survey meter, and shielding levels. Through this approach, we expect that trainees will acquire practical skills in interpreting survey-meter readings and gain a visual understanding of radiation in real-world situations.

Development of Measuring Method for Bridge Scour and Water Level Using Temperature Difference Between Medium Interfaces (매질 경계면의 온도 변화를 이용한 교량 세굴 및 수위 측정방법 개발)

  • Joo, Bong-Chul;Park, Ki-Tae;You, Young-Jun;Hwang, Yoon-Koog
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.126-133
    • /
    • 2014
  • The main source of bridge destruction is due to scour. The bridge scour is the result of erosive action of flowing water taking away ground materials from near the abutment or pier. Furthermore, the water level must be also monitored whiling flooding, because it dangers not only the stability of bridge itself, but the safety of bridge users. This study is intended to develop a new measuring system for bridge scour by overcoming the current limitation of scour measurement technique. This measuring system is confirmed its excellence and validity through this study. The newly developed measuring system finds the distance between the water surface and the ground surface by detecting temperature difference along the abutment vertically. The measuring mechanism for monitoring the bridge scour and water level is based on identifying the temperature difference among mediums, including air, water and ground. In order to validate the new measuring system, the lab experiments and the field tests are conducted and compared. It has been confirmed that this system can effectively measure the bridge scour and the water level by analyzing the temperature distribution between mediums and the temperature variation over time.

Object Search Using Synchronous Ultrasonic Wave Emission for the Blind Guide system (시각장애인 안내 시스템을 위한 복수 초음파센서 동시 조사에 의한 장애물 검색)

  • Kim, Chang-Geol;Song, Byung-Seop
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.5
    • /
    • pp.384-391
    • /
    • 2008
  • For use in the guide system for the people who are visually impaired, an obstacle searching device using synchronous ultrasonic wave emission was proposed and developed. Generally, the conventional obstacle detection methods use the ultrasonic distance measuring device with successive scan method. However, the scan method causes a theoretical error and it couldn't estimate accurate obstacle distances. The proposed synchronous firing method use the plural number of ultrasonic sensors which emit ultrasonic wave simultaneously and estimate the distance to the closest obstacle relatively accurately. We analytically analyzed the errors of the conventional and proposed methods and compared the quantitative differences of the errors. The differences verified by obstacle search experiments. Using the proposed ultrasonic wave synchronous firing method, 3 dimensional obstacle location estimating device was designed and implemented. The results of the 3 dimensional obstacle detecting experiments showed the proposed method had good performances and it would be sufficiently use in the guide system for the people who are visually impaired.

A Study on the Electromagnetic Wave Measurement in Diagnostic Imaging Equipment (진단용 영상장치에서 전자파 측정에 관한 고찰)

  • Eo, Yun-Gi
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.7 no.1
    • /
    • pp.39-44
    • /
    • 2005
  • Purpose of this research is that if Radiographer has focused on Radiation exposure research until now, he should realize that always exposed by Electro Magnetic Wave at given working environment And also, another purpose is that to minimize damage with measuring Electro Magnetic Wave which is happened area and distance of Radiation Control System and High Voltage Equipment, check occurrence rate and minimize damage from it.

  • PDF

Time-distance Accessibility Computation of Seoul Bus System based on the T-card Transaction Big Databases (교통카드 빅데이터 기반의 서울 버스 교통망 시간거리 접근성 산출)

  • Park, Jong Soo;Lee, Keumsook
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.539-555
    • /
    • 2015
  • This study proposes the methodology for measuring the time-distance accessibility on the Seoul bus system based on the T-card transaction databases and analyzes the results. T-card transaction databases contain the time/space information of each passenger's locations and times of the departure, transfers, and destination. We introduce the bus network graph and develop the algorithms for time-distance accessibility measurement. We account the average speed based on each passenger's get-in and getoff information in the T-card data as well as the average transfer time from the trip chain transactions. Employing the modified Floyd APSP algorithm, the shortest time distance between each pair of bus stops has been accounted. The graph-theoretic nodal accessibility has been given by the sum of the inverse time distance to all other nodes on the network. The results and spatial patterns are analyzed. This study is the first attempt to measure the time-distance accessibility for such a large transport network as the Seoul bus system consists of 34,934 bus stops on the 600 bus routes, and each bus route can have different properties in terms of speed limit, number of lanes, and traffic signal systems, and thus has great significance in the accessibility measurement studies.

  • PDF

A Semantic Distance Measurement Model using Weights on the LOD Graph in an LOD-based Recommender System (LOD-기반 추천 시스템에서 LOD 그래프에 가중치를 사용한 의미 거리 측정 모델)

  • Huh, Wonwhoi
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.7
    • /
    • pp.53-60
    • /
    • 2021
  • LOD-based recommender systems usually leverage the data available within LOD datasets, such as DBpedia, in order to recommend items(movies, books, music) to the end users. These systems use a semantic similarity algorithm that calculates the degree of matching between pairs of Linked Data resources. In this paper, we proposed a new approach to measuring semantic distance in an LOD-based recommender system by assigning weights converted from user ratings to links in the LOD graph. The semantic distance measurement model proposed in this paper is based on a processing step in which a graph is personalized to a user through weight calculation and a method of applying these weights to LDSD. The Experimental results showed that the proposed method showed higher accuracy compared to other similar methods, and it contributed to the improvement of similarity by expanding the range of semantic distance measurement of the recommender system. As future work, we aim to analyze the impact on the model using different methods of LOD-based similarity measurement.

Impact of solar storm on Navaids system (태양폭풍이 항행안전시설에 미치는 영향분석)

  • Jo, Jin-Ho;Park, Jae-Woo;Jeong, Cheol-Oh;Kim, Jae-Hoon;Kim, Gye-Hyeun;Park, Hyeung-Tak
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.2
    • /
    • pp.13-17
    • /
    • 2012
  • The solar storm generated by solar activity can be impact on earth in various area. If solar storm impact on Navaids system, it will be a serious problem for aviation and human safety. The impact analysis of solar strom on Navaids system are performed in three area, ILS, GPS navigation and radio communication for aviation. Analysis result show that Instrument Landing System(LLZ, GP, MB) and Navaids system(VOR, DME, Radar) are not impacted by the solar storm, but GPS system is impacted by solar storm. Also analysis result show that VHF/UHF radio system are not impacted by solar storm, but HF radio system is impacted by solar storm.

An Image Processing System for the Harvesting robot$^{1)}$ (포도수확용 로봇 개발을 위한 영상처리시스템)

  • Lee, Dae-Weon;Kim, Dong-Woo;Kim, Hyun-Tae;Lee, Yong-Kuk;Si-Heung
    • Journal of Bio-Environment Control
    • /
    • v.10 no.3
    • /
    • pp.172-180
    • /
    • 2001
  • A grape fruit is required for a lot of labor to harvest in time in Korea, since the fruit is cut and grabbed currently by hand. In foreign country, especially France, a grape harvester has been developed for processing to make wine out of a grape, not to eat a fresh grape fruit. However, a harvester which harvests to eat a fresh grape fruit has not been developed yet. Therefore, this study was designed and constructed to develope a image processing system for a fresh grape harvester. Its development involved the integration of a vision system along with an personal computer and two cameras. Grape recognition, which was able to found the accurate cutting position in three dimension by the end-effector, needed to find out the object from the background by using two different images from two cameras. Based on the results of this research the following conclusions were made: The model grape was located and measured within less than 1,100 mm from camera center, which means center between two cameras. The distance error of the calculated distance had the distance error within 5mm by using model image in the laboratory. The image processing system proved to be a reliable system for measuring the accurate distance between the camera center and the grape fruit. Also, difference between actual distance and calculated distance was found within 5 mm using stereo vision system in the field. Therefore, the image processing system would be mounted on a grape harvester to be founded to the position of the a grape fruit.

  • PDF