• Title/Summary/Keyword: Distance Measurement Method

Search Result 945, Processing Time 0.037 seconds

Setting the Current Air Quality Concentration Using the National Atmosphere Measurement Network

  • CHO, Dong-Myung;LEE, Ju-Yeon;KWON, Lee-Seung;KIM, Su-Hye;KWON, Woo-Taeg
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.4 no.3
    • /
    • pp.23-33
    • /
    • 2021
  • Purpose: In the course of the domestic environmental impact assessment, the current status survey was improperly conducted, and the issue of false and inaccurate environmental impact assessment reports has been raised several times recently through media reports. Research design, data and methodology: There is a continuous demand for improvement measures for the current status measurement method, such as having difficulties in securing a normal measurement date in consideration of equipment operation and rainfall days in the field. Results: In addition, in order to grasp the general air quality status of the evaluation target area, it is necessary to check the various current status concentrations by season and time series per year. However, there is a problem that is currently being carried out based on limited results such as measurement for 1 day or 3 days. Conclusions: Therefore, in this study, based on the national atmospheric measurement network, an inverse distance weighted (IDW) interpolation method was applied to calculate the current state concentration. This study suggested a method to use it in preparing the air quality item in the environmental impact assessment report.

Improved Trilateration Method on USN for reducing the Error of a Moving Node Position Measurement (무선센서네트워크에서 삼변측량법 기반 이동노드 위치 오차를 줄이는 탐색기법)

  • Mun, Hyung-Jin;Jeong, Hee-Young;Han, Kun-Hee
    • Journal of Digital Convergence
    • /
    • v.14 no.5
    • /
    • pp.301-307
    • /
    • 2016
  • The location measurement technique of moving worker in dangerous areas, is necessary for safety in the mines, basements, warehouses, etc. There are various measurement techniques about moving node of position in a restricted environment. Trigonometric Method, one of measurement techniques, is commonly used because of its easiness. However, errors occur frequently when measuring distance and position due to radio interference and physical disability with measuring instruments. This paper proposed a method which is more accurate and shows reduced margin of error than existing trigonometric method by recalculating distance between Anchor and moving node with various measuring instruments. By adding Anchor when calculating distance and position of moving node's estimated point, suggested technique obtains at least 41% efficiency compared to existing method.

A Distance Measurement System Using a Laser Pointer and a Monocular Vision Sensor (레이저포인터와 단일카메라를 이용한 거리측정 시스템)

  • Jeon, Yeongsan;Park, Jungkeun;Kang, Taesam;Lee, Jeong-Oog
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.5
    • /
    • pp.422-428
    • /
    • 2013
  • Recently, many unmanned aerial vehicle (UAV) studies have focused on small UAVs, because they are cost effective and suitable in dangerous indoor environments where human entry is limited. Map building through distance measurement is a key technology for the autonomous flight of small UAVs. In many researches for unmanned systems, distance could be measured by using laser range finders or stereo vision sensors. Even though a laser range finder provides accurate distance measurements, it has a disadvantage of high cost. Calculating the distance using a stereo vision sensor is straightforward. However, the sensor is large and heavy, which is not suitable for small UAVs with limited payload. This paper suggests a low-cost distance measurement system using a laser pointer and a monocular vision sensor. A method to measure distance using the suggested system is explained and some experiments on map building are conducted with these distance measurements. The experimental results are compared to the actual data and the reliability of the suggested system is verified.

On the Measurement of the Depth and Distance from the Defocused Imagesusing the Regularization Method (비초점화 영상에서 정칙화법을 이용한 깊이 및 거리 계측)

  • 차국찬;김종수
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.6
    • /
    • pp.886-898
    • /
    • 1995
  • One of the ways to measure the distance in the computer vision is to use the focus and defocus. There are two methods in this way. The first method is caculating the distance from the focused images in a point (MMDFP: the method measuring the distance to the focal plane). The second method is to measure the distance from the difference of the camera parameters, in other words, the apertures of the focal planes, of two images with having the different parameters (MMDCI: the method to measure the distance by comparing two images). The problem of the existing methods in MMDFP is to decide the thresholding vaue on detecting the most optimally focused object in the defocused image. In this case, it could be solved by comparing only the error energy in 3x3 window between two images. In MMDCI, the difficulty is the influence of the deflection effect. Therefor, to minimize its influence, we utilize two differently focused images instead of different aperture images in this paper. At the first, the amount of defocusing between two images is measured through the introduction of regularization and then the distance from the camera to the objects is caculated by the new equation measuring the distance. In the results of simulation, we see the fact to be able to measure the distance from two differently defocused images, and for our approach to be robuster than the method using the different aperture in the noisy image.

  • PDF

Measured Intensity Control Method of a Phase-shift Measurement Based Laser Scanner by using APD Bias Voltage Characteristic (위상 검출 방식 레이저 스캐너의 APD bias 전압 특성을 이용한 검출신호세기 제어 방법)

  • Jang, Jun-Hwan;Yoon, Hee-Sun;Hwang, Sung-Ui;Park, Kyi-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.10
    • /
    • pp.1096-1100
    • /
    • 2012
  • In the phase-shift measurement method, the distance light travels can be obtained based on the phase difference between the reference signal and the measured signal. When the object having various colors is measured, the intensity of the measured signal much varies even at the same distance, and it causes different phase delay due to wide dynamic range input to a signal processing circuit. In this work, an measured intensity control method is proposed to solve this phase delay problem.

A Study on Distance Measurement using CSS and RSSI in WPAN (개인 무선네트워크에서 CSS 방식과 RSSI 를 이용한 거리측정에 관한 연구)

  • Kwon, Tai-Gil;Cho, Jin-Woong;Lim, Seung-Ok;Lee, Jang-Yeon;Lee, Hyeon-Seok;Won, Yun-Jae
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.321-322
    • /
    • 2008
  • CSS(Chirp Spread Spectrum) technology adopt SDS-TWR algorithms of TOA(Time of Arrival) using velocity of specific medium and ToF(Time of Flight) to measure a distance, but this method always has a regular error on distance regardless of a real distance, as a result, in far distance, it decrease a error on distance relatively, but in near distance, it increase a error on distance relatively. in this paper, we propose and test new method measuring a distance more precisely in near distance using CSS and RSSI

  • PDF

Interference Elimination Method of Ultrasonic Sensors Using K-Nearest Neighbor Algorithm (KNN 알고리즘을 활용한 초음파 센서 간 간섭 제거 기법)

  • Im, Hyungchul;Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.169-175
    • /
    • 2022
  • This paper introduces an interference elimination method using k-nearest neighbor (KNN) algorithm for precise distance estimation by reducing interference between ultrasonic sensors. Conventional methods compare current distance measurement result with previous distance measurement results. If the difference exceeds some thresholds, conventional methods recognize them as interference and exclude them, but they often suffer from imprecise distance prediction. KNN algorithm classifies input values measured by multiple ultrasonic sensors and predicts high accuracy outputs. Experiments of distance measurements are conducted where interference frequently occurs by multiple ultrasound sensors of same type, and the results show that KNN algorithm significantly reduce distance prediction errors. Also the results show that the prediction performance of KNN algorithm is superior to conventional voting methods.

Vibration and Noise Analysis According to Blasting Method (발파공법에 따른 진동 및 소음 분석)

  • Kim, Min-Hyouck
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.150-151
    • /
    • 2022
  • Blasting is a method that uses explosives to crush the ground. This method is a highly efficient ground cleaning method that can secure high efficiency in a short time. However, explosions can damage local properties and produce high noise and vibration. Therefore, it is important to be careful because there are disadvantages such as the occurrence of many complaints from the surrounding area. In this paper measured and analyzed the noise and vibration generated during blasting at the blasting site in Korea. The noise and vibration generated during blasting were measured by ES03303.2b and ES03402.2a at a distance of 6 m, 12 m from the blasting point. As a result of the measurement, there was little difference between small and medium scale except for precision vibration blasting at a distance of 6m, but noise difference according to blasting scale was evident at a distance of 12m. As a result of the measurement, the maximum noise level was reduced to 5.5 dB(A) and the vibration level was reduced to 7.7 dB(V). In the future, the reliability of the test results can be further improved through additional tests, and it is judged that noise and vibration prediction models based on blasting methods, amount of charge, measuring distance, etc. can be developed.

  • PDF

A Study on the Strain Measuring of Structure Object (전자처리 및 Laser 간섭에 의한 구조물의 Strain측정에 관한 연구)

  • 김경석;최형철;양승필;정현철;김정호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.267-272
    • /
    • 1993
  • This paper presents the performance and problems in analysis method and testing system of Electronic Speckle Pattern Interferometry (ESPI) method, in measuring two-dimensional in-plane displacement. The anyalysis result of measurement by ESPI is quite comparable to that of measurement by strain gauge method. This implieds that the method of ESPI is a very effective tool in non-contact two-dimensional in-planc strain analysis. But there is a controversal point,measurment error. This error is discussed to be affected not by ESPI method itseif, but by its analysis scheme of the interference fringe,where the first-order interpolation has been applied to the points of strain measured. In this case, it is turned out that the more errors would be occured in the large interval of fringe. so, this paper describes a computer method for drawing when the height is available only for some arbitary collection of points, the method is based on a distance-weighted, least-squares approximation technique, with the weight varying with the distance of the data points.

  • PDF

A Study on the Object Angle Inference in a Sonar Sensor Array System (초음파센서 배열 시스템에서 물체의 각도 추론에 관한 연구)

  • 나승유;박민상
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.271-274
    • /
    • 1998
  • Ultrasonic sensors are becoming indispensable components in every sector of automation equipments due to many advantages. But the main purposes of the noncontact sensing device are rather narrowly confined within object detection and distance measurement. To widen the realm of the applications to object recognition, ultrasonic sensors need to improve the recognition resolution to a certain amount. To resolve the problem of spatial resolution restriction, an increased number of the sensors in the forms of a linear array or 2-dimensional array of the sensor has been used. Also better resolution has been obtained by shifting the array in several steps using mechanical actuators. For an object recognition using ultrasonic sensors, measurements of distance, shift, oblique angle in certain ranges should be obtained. But a little attention has been paid to the measurement of angles. In this paper we propose a practical method for an object angular value detection in addition to distance measurement in ultrasonic sensor array system with little additional hardware burden. Using the established measurement look-up table for the variations of distance, shift, angle and transmitter voltages for each sensor characteristics, a set of different return echo signals for adjacent receivers are processed to provide enhanced angular value reading for an object.

  • PDF