• 제목/요약/키워드: Distance Matrix

Search Result 491, Processing Time 0.026 seconds

A multi-objective Loading/Routeing and Sequencing decision in a Flexible Manufacturing System (유연 생산시스템에서의 작업할당/경로선정/부품투입순서의 결정)

  • Lee, Young-Kwang;Chung, Byung-Hee
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.19 no.4
    • /
    • pp.41-48
    • /
    • 1993
  • Prime advantage of flexible manufacturing systems(FMS) is a flexibility. Flexibility is expected to prolong the service life of a manufacturing facility and enable it to respond quickly and economically to dynamic market change. The FMS loading decision is concerned with the allocation of operations and tools to machines subject to technological and capacity constraints of the system. Modern FMS loading problem has the multiple objectives such as processing cost, time and work load balance. We propose multi-objectives which could be used to formulate the loading/routeing problem and sequencing decision which should be adopted for each part type in order to maximize the machine flexibility by Hamming distance matrix based on Incidance matrix. Finally, a numerical example is provided to illustrate the proposed model.

  • PDF

Fatigue Crack Growth Behavior of Short fiber/Particle Hybrid Metal Matrix Composites (단섬유/입자 혼합 금속복합재료의 피로균열진전 거동)

  • Oh K.H.;Jang J. H.;Han K. S.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.219-222
    • /
    • 2004
  • The effects of short fiber and particle hybrid reinforcement on fatigue crack propagation behaviors in aluminum matrix composites have been investigated. Single and hybrid reinforced 6061 aluminum containing same 20 $Al_2O_3\;volume\%$ with four different constituent ratios of short fibers and particles were prepared by squeeze casting method and tested to check the near-threshold and stable crack growth behavior. The fatigue threshold of the composites increased with portion of particle contents and showed the improved crack resistance especially in low stress intensity range. Addition of particle instead of short fiber also increased fracture toughness due to increase of inter-reinforcement distance. These increase in both fatigue threshold and fracture toughness eventually affected the fatigue crack growth behavior such that the crack growth curve shift low to high stress intensity factor value. Overall experimental results were shown that particle reinforcement was enhanced the fatigue crack resistance over the whole stress intensity factor range.

  • PDF

Diagnosis and recovering on spatially distributed acceleration using consensus data fusion

  • Lu, Wei;Teng, Jun;Zhu, Yanhuang
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.271-290
    • /
    • 2013
  • The acceleration information is significant for the structural health monitoring, which is the basic measurement to identify structural dynamic characteristics and structural vibration. The efficiency of the accelerometer is subsequently important for the structural health monitoring. In this paper, the distance measure matrix and the support level matrix are constructed firstly and the synthesized support level and the fusion method are given subsequently. Furthermore, the synthesized support level can be served as the determination for diagnosis on accelerometers, while the consensus data fusion method can be used to recover the acceleration information in frequency domain. The acceleration acquisition measurements from the accelerometers located on the real structure National Aquatics Center are used to be the basic simulation data here. By calculating two groups of accelerometers, the validation and stability of diagnosis and recovering on acceleration based on the data fusion are proofed in the paper.

Artificial Landmark based Pose-Graph SLAM for AGVs in Factory Environments (공장환경에서 AGV를 위한 인공표식 기반의 포즈그래프 SLAM)

  • Heo, Hwan;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.2
    • /
    • pp.112-118
    • /
    • 2015
  • This paper proposes a pose-graph based SLAM method using an upward-looking camera and artificial landmarks for AGVs in factory environments. The proposed method provides a way to acquire the camera extrinsic matrix and improves the accuracy of feature observation using a low-cost camera. SLAM is conducted by optimizing AGV's explored path using the artificial landmarks installed on the ceiling at various locations. As the AGV explores, the pose nodes are added based on the certain distance from odometry and the landmark nodes are registered when AGV recognizes the fiducial marks. As a result of the proposed scheme, a graph network is created and optimized through a G2O optimization tool so that the accumulated error due to the slip is minimized. The experiment shows that the proposed method is robust for SLAM in real factory environments.

Automatic Determination of Constraint Parameter for Improving Homography Matrix Calculation in RANSAC Algorithm

  • Chandra, Devy;Lee, Kee-Sung;Jo, Geun-Sik
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.04a
    • /
    • pp.830-833
    • /
    • 2014
  • This paper proposes dynamic constraint parameter to filter out degenerate configurations (i.e. set of collinear or adjacent features) in RANSAC algorithm. We define five different groups of image based on the feature distribution pattern. We apply the same linear and distance constraints for every image, but we use different constraint parameter for every group, which will affect the filtering result. An evaluation is done by comparing the proposed dynamic CS-RANSAC algorithm with the classic RANSAC and regular CS-RANSAC algorithms in the calculation of a homography matrix. The experimental results show that dynamic CS-RANSAC algorithm provides the lowest error rate compared to the other two algorithms.

Attitude and Position Estimation of a Helmet Using Stereo Vision (스테레오 영상을 이용한 헬멧의 자세 및 위치 추정)

  • Shin, Ok-Shik;Heo, Se-Jong;Park, Chan-Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.7
    • /
    • pp.693-701
    • /
    • 2010
  • In this paper, it is proposed that an attitude and position estimation algorithm based on a stereo camera system for a helmet tracker. Stereo camera system consists of two CCD camera, a helmet, infrared LEDs and a frame grabber. Fifteen infrared LEDs are feature points which are used to determine the attitude and position of the helmet. These features are arranged in triangle pattern with different distance on the helmet. Vision-based the attitude and position algorithm consists of feature segmentation, projective reconstruction, model indexing and attitude estimation. In this paper, the attitude estimation algorithm using UQ (Unit Quaternion) is proposed. The UQ guarantee that the rotation matrix is a unitary matrix. The performance of presented algorithm is verified by simulation and experiment.

Voice Activity Detection Based on Non-negative Matrix Factorization (비음수 행렬 인수분해 기반의 음성검출 알고리즘)

  • Kang, Sang-Ick;Chang, Joon-Hyuk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.8C
    • /
    • pp.661-666
    • /
    • 2010
  • In this paper, we apply a likelihood ratio test (LRT) to a non-negative matrix factorization (NMF) based voice activity detection (VAD) to find optimal threshold. In our approach, the NMF based VAD is expressed as Euclidean distance between noise basis vector and input basis vector which are extracted through NMF. The optimal threshold each of noise environments depend on NMF results distribution in noise region which is estimated statistical model-based VAD. According to the experimental results, the proposed approach is found to be effective for statistical model-based VAD using LRT.

Lubricated Wear Properties of Hybrid Metal Matrix Composites (하이브리드 금속복합재료의 윤활마모특성)

  • Fu, Hui-hui;Bae, Sung-in;Ham, Kyung-chun;Song, Jung-il
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.135-138
    • /
    • 2002
  • The purpose of this study is to investigate the lubricated wear properties of Saffil/Al, Saffil/$Al_2O_3/Al$ and Saffil/SiC/Al hybrid metal matrix composites fabricated by squeeze casting method. Wear tests were done on a pin-on-disk friction & wear tester with long sliding distance. The wear properties of the three composites were evaluated in many respects. The effects of Saffil, $Al_2O_3$ particles and SiC particles on the wear behavior of the composites under lubricated conditions were elucidated. Wear mechanisms were analyzed by observing the worn surfaces of the composites. The variation of coefficient of friction (COF) during the wear process was recorded by using a computer. Comparing with the dry sliding condition, all three composites showed excellent wear resistance when lubricated by liquid paraffin. Under intermediate load, Saffil/Al showed best wear resistance among them, and its COF value is the smallest. The dominant wear mechanism of the composites was microploughing, but microcracking also occurred for them to different extent.

  • PDF

The Study of Mobile Robot Self-displacement Recognition Using Stereo Vision (스테레오 비젼을 이용한 이동로봇의 자기-이동변위인식 시스템에 관한 연구)

  • 심성준;고덕현;김규로;이순걸
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.934-937
    • /
    • 2003
  • In this paper, authors use a stereo vision system based on the visual model of human and establish inexpensive method that recognizes moving distance using characteristic points around the robot. With the stereovision. the changes of the coordinate values of the characteristic points that are fixed around the robot are measured. Self-displacement and self-localization recognition system is proposed from coordination reconstruction with those changes. To evaluate the proposed system, several characteristic points that is made with a LED around the robot and two cheap USB PC cameras are used. The mobile robot measures the coordinate value of each characteristic point at its initial position. After moving, the robot measures the coordinate values of the characteristic points those are set at the initial position. The mobile robot compares the changes of these several coordinate values and converts transformation matrix from these coordinate changes. As a matrix of the amount and the direction of moving displacement of the mobile robot, the obtained transformation matrix represents self-displacement and self-localization by the environment.

  • PDF

Gaussian Weighted CFCM for Blind Equalization of Linear/Nonlinear Channel

  • Han, Soo-Whan
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.3
    • /
    • pp.169-180
    • /
    • 2013
  • The modification of conditional Fuzzy C-Means (CFCM) with Gaussian weights (CFCM_GW) is accomplished for blind equalization of channels in this paper. The proposed CFCM_GW can deal with both of linear and nonlinear channels, because it searches for the optimal desired states of an unknown channel in a direct manner, which is not dependent on the type of channel structure. In the search procedure of CFCM_GW, the Bayesian likelihood fitness function, the Gaussian weighted partition matrix and the conditional constraint are exploited. Especially, in contrast to the common Euclidean distance in conventional Fuzzy C-Means(FCM), the Gaussian weighted partition matrix and the conditional constraint in the proposed CFCM_GW make it more robust to the heavy noise communication environment. The selected channel states by CFCM_GW are always close to the optimal set of a channel even when the additive white Gaussian noise (AWGN) is heavily corrupted. These given channel states are utilized as the input of the Bayesian equalizer to reconstruct transmitted symbols. The simulation studies demonstrate that the performance of the proposed method is relatively superior to those of the existing conventional FCM based approaches in terms of accuracy and speed.