• Title/Summary/Keyword: Distance Instrument

Search Result 165, Processing Time 0.035 seconds

Mobile Mapping System Development Based on MEMS-INS for Measurement of Road Facility (도로시설물 계측을 위한 MEMS-INS 기반 모바일매핑시스템(MMS) 개발)

  • Lee, Kye Dong;Jung, Sung Heuk;Lee, Ki Hyung;Choi, Yun Soo;Kim, Man Sik
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.2
    • /
    • pp.75-84
    • /
    • 2018
  • The purpose of this study is that the low-cost mobile mapping system using INS (Inertial Navigation System) based on MEMS (Micro Electro Mechanical System) could decipher the interpretation of road facility with the accuracy of x, y 0.546m plane error. Even though the MMS (Mobile Mapping System) technology as a new measurement technology has been used vividly to set up geographic information by some world leading surveying equipment manufacturers, the domestic technology is still in its beginning stage. Several domestic institutes and companies tried to catch up the leading technology but they just produced prototypes which needs more stabilization. Through this thesis, we developed low-cost mobile mapping system installed with INS based on MEMS after time synchronizing sensors for MMS such as LiDAR (Light Detection And Ranging), CCD (Charge Coupled Device), GPS/INS (Global Positioning System / Inertial Navigation System) and DMI (Distance Measurement Instrument).

Development of Highly Reliable Power and Communication System for Essential Instruments Under Severe Accidents in NPP

  • Choi, Bo Hwan;Jang, Gi Chan;Shin, Sung Min;Lee, Soo Ill;Kang, Hyun Gook;Rim, Chun Taek
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1206-1218
    • /
    • 2016
  • This article proposes a highly reliable power and communication system that guarantees the protection of essential instruments in a nuclear power plant under a severe accident. Both power and communication lines are established with not only conventional wired channels, but also the proposed wireless channels for emergency reserve. An inductive power transfer system is selected due to its robust power transfer characteristics under high temperature, high pressure, and highly humid environments with a large amount of scattered debris after a severe accident. A thermal insulation box and a glass-fiber reinforced plastic box are proposed to protect the essential instruments, including vulnerable electronic circuits, from extremely high temperatures of up to $627^{\circ}C$ and pressure of up to 5 bar. The proposed wireless power and communication system is experimentally verified by an inductive power transfer system prototype having a dipole coil structure and prototype Zigbee modules over a 7-m distance, where both the thermal insulation box and the glass-fiber reinforced plastic box are fabricated and tested using a high-temperature chamber. Moreover, an experiment on the effects of a high radiation environment on various electronic devices is conducted based on the radiation test having a maximum accumulated dose of 27 Mrad.

Achievement of 3-D Pulse Waves of Pulse Diagnostic Apparatus by using Multi-Hall Devices (다중 홀소자를 이용한 맥진기의 3차원 파형 획득 연구)

  • Choi, S.D.;Kim, M.S.;Ahn, M.C.;Choi, Y.G.;Kim, G.W.;Park, D.H.;Hwang, D.G.;Lee, S.S.
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.4
    • /
    • pp.216-220
    • /
    • 2006
  • The electric signals for the voltage as a function of distance between Hall devices and permanent magnets over the radial artery were investigated. The electric sgnals, that means signals of arterial pulse wave, were differentiated by the hardware of circuits and then were changed to differential signals as magnetic field. The 3-D images simulated by the software as function fo the intensity of differential signals were achieved. It shows that these system can apply to pulse diagnostic apparatus of porthble type medical instrument.

Dietary Supplementation with Raspberry Extracts Modifies the Fecal Microbiota in Obese Diabetic db/db Mice

  • Garcia-Mazcorro, Jose F.;Pedreschi, Romina;Chew, Boon;Dowd, Scot E.;Kawas, Jorge R.;Noratto, Giuliana
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.8
    • /
    • pp.1247-1259
    • /
    • 2018
  • Raspberries are polyphenol-rich fruits with the potential to reduce the severity of the clinical signs associated with obesity, a phenomenon that may be related to changes in the gut microbiota. The aim of this study was to investigate the effect of raspberry supplementation on the fecal microbiota using an in vivo model of obesity. Obese diabetic db/db mice were used in this study and assigned to two experimental groups (with and without raspberry supplementation). Fecal samples were collected at the end of the supplementation period (8 weeks) and used for bacterial 16S rRNA gene profiling using a MiSeq instrument (Illumina). QIIME 1.8 was used to analyze the 16S data. Raspberry supplementation was associated with an increased abundance of Lachnospiraceae (p = 0.009), a very important group for gut health, and decreased abundances of Lactobacillus, Odoribacter, and the fiber degrader S24-7 family as well as unknown groups of Bacteroidales and Enterobacteriaceae (p < 0.05). These changes were enough to clearly differentiate bacterial communities accordingly to treatment, based on the analysis of UniFrac distance metrics. However, a predictive approach of functional profiles showed no difference between the treatment groups. Fecal metabolomic analysis provided critical information regarding the raspberry-supplemented group, whose relatively higher phytosterol concentrations may be relevant for the host health, considering the proven health benefits of these phytochemicals. Further studies are needed to investigate whether the observed differences in microbial communities (e.g., Lachnospiraceae) or metabolites relate to clinically significant differences that can prompt the use of raspberry extracts to help patients with obesity.

COMPARISON OF ABSORBED DOSES RESULTING FROM VARIOUS INTRAORAL PERIAPICAL RADIOGRAPHY (전악 치근단 방사선사진 촬영시 촬영조건에 따른 흡수선량 변화에 대한 연구)

  • Kang Mi-Ae;Park Tae-Won
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.25 no.2
    • /
    • pp.297-308
    • /
    • 1995
  • This study was designed to measure the absorbed dose to organs of special interest from full mouth with intraoral film(l4 films) and to compare the five periapical techniques. Thermoluminescent crystals(TLD-100 chip) were located in brain, orbit, bone marrow of mandibular ramus, bone marrow of mandibular body, bone marrow of 4th cervical spine, parotid gland, submandibular gland and thyroid gland. X -ray machine was operated at 70kVp and round collimating film holding device(XCP) and rectangular collimating film holding device(Precision Instrument) were used. The distance from the X-ray focus to the open end of the collimator was 8 inch, 12 inch and 16 inch. The results were as follows : 1. The absorbed dose was the highest in bone marrow of mandibular body(5.656mGy) and the lowest in brain (0.050mGy). 2. Generally, the lowest absorbed dose was measured from 16 inch cylinder, rectangular collimating film holding device with paralleling technique. But, in bone marrow of mandibular body and the floor of mouth, the highest absorbed dose was measured from 12 inch cylinder, rectangular collimating film holding device with paralleling techniques. 3. Comparing of five intraoral radiographic techniques, it was appeared statistically significant reduction of the absorbed doses measured with rectangular collimating film holding device compared to XCP film holding device (P<0.05). 4. No statistically significant reduction in the absorbed dose was found as cylinder length was changed(P>0.05).

  • PDF

A Study on the Calculation of the Area through the Three Dimensional Terrain Model (3차원 지형모델을 이용한 면적산출에 관한 연구)

  • 강인준;장용구;김상석;김윤수
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.2
    • /
    • pp.111-118
    • /
    • 2002
  • These days, surveying instruments are developing rapidly and the precision is improving continuously. The building of three dimensional terrains of high precision are possible and the calculation of the areas or the volumes have high precision due to the development of the technique of the spatial information system using computer. But actually, in construction site they calculate two-dimensional area using the traditional method, plate table surveying, planimeter, and then get three-dimensional area through multiplying two-dimensional area by the slope correction factor. In this study, we show the defect and inefficiency of the calculation of area by the traditional methods and survey the area with Electric Distance Measurement and GPS instrument. With this data, we made the three dimensional terrain model and calculated two-dimensional area, three-dimensional area. After that, we compared areas that calculated by algorithm of triangulated irregular network and analysis of grid method with standard area that calculated by the traditional method. Finally, this paper suggested more effective and precious method in calculating three-dimensional area.

Design of Crank Drive System Based on Gait Pattern for Stand-up Bicycle (보행패턴을 접목한 직립주행 자전거용 크랭크 구동장치의 거동분석)

  • Hyeong, Joonho;Roh, Jongryun;Kim, Sayup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.10
    • /
    • pp.991-996
    • /
    • 2017
  • Gait stability is partly characterized by an extended stance phase that comprises 60 of the gait % cycle. In this study, a gait pattern was employed for a crank drive system that allows for stable lower limb kinematics during stand-up cycling. A quick return mechanism was applied to the crank system to allow for a slow rotation of the crank during the stance phase and for a quick return during the swing phase. Design parameters for the quick return crank mechanism were defined, and kinematic simulations were performed to understand the behavior of the mechanism. To evaluate the design, an experimental instrument was fabricated, and the cycling motion was analyzed. The results indicated that this new drive system can stabilize the center of mass of the user. This study can contribute to the development of a stand-up bicycle that allows for more comfortable leg kinematics.

Scale Marking Method on the Circumference of Circle Elements for Astronomical Instruments in the Early Joseon Dynasty

  • Mihn, Byeong-Hee;Lee, Ki-Won;Ahn, Young Sook;Lee, Yong Sam
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.1
    • /
    • pp.63-71
    • /
    • 2015
  • During the reign of King Sejong (世宗, 1418-1450) in the Joseon Dynasty, there were lots of astronomical instruments, including miniaturized ones. Those instruments utilized the technical know-how acquired through building contemporary astronomical instruments previously developed in the Song(宋), Jin(金), and Yuan(元) dynasties of China. In those days, many astronomical instruments had circles, rings, and spheres carved with a scale of 365.25, 100, and 24 parts, respectively, on their circumference. These were called the celestial-circumference degree, hundred-interval (Baekgak), and 24 direction, respectively. These scales are marked by the angular distance, not by the angle. Therefore, these circles, rings, and spheres had to be optimized in size to accomodate proper scales. Assuming that the scale system is composed of integer multiples of unit length, we studied the sizes of circles by referring to old articles and investigating existing artifacts. We discovered that the star chart of Cheonsang yeolcha bunyajido was drawn with a royal standard ruler (周尺) based on the unit length of 207 mm. Interestingly, its circumference was marked by the unit scale of 3 puns per 1 du (or degree) like Honsang (a celestial globe). We also found that Hyeonju ilgu (a equatorial sundial) has a Baekgak disk on a scale of 1 pun per 1 gak (that is an interval of time similar to a quarter). This study contributes to the analysis of specifications of numerous circular elements from old Korean astronomical instruments.

A Comparison of PM10 Exposure Characteristics of Swine Farmers by Body Parts using Direct-reading Instrument (직독식 기기를 이용한 양돈작업자의 신체부위별 PM10 노출 특성 비교 연구)

  • Sin, Sojung;Kim, Hyocher;Kim, Kyung-ran;Seo, Mintae;Park, Sooin;Kim, Kyungmin;Kim, Kyungsu
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.2
    • /
    • pp.159-166
    • /
    • 2019
  • Objectives: The purpose of this study was to evaluate the personal exposure to $PM_{10}$ by body parts for the development of dust monitoring wearable device for swine farmers. Methods: Tasks were classified by using motion pictures taken by action cameras attached to swine farmers. Concentrations of $PM_{10}$ were measured by attaching direct-reading instruments at the head, neck and waist of worker. Differences of $PM_{10}$ exposure between body parts were analyzed with linear regression. Results: We identified three tasks(vaccination, moving pigs, and manure treatment). $PM_{10}$ concentration during vaccination was the highest among the tasks, and the body part showing the highest concentration of $PM_{10}$ was the waist regardless of task. In all tasks, the closer distance between the body parts, the higher were the R-squared values(vaccination 0.4221, moving pigs 0.6990, and manure treatment 0.2164). Conclusions: We presumed that $PM_{10}$ concentrations were affected by the parts of the body in which they were measured. In order to develop swine farmer's wearable device for monitoring dust concentration in air, the determination of the positions of monitoring sensor to ensure accurate measurement is essential. Considering the results of this study, wearable sensor should be positioned at the waist.

A Comparative Study of the Plantar Foot Pressure according to the Form of Foot Angle during Level Walking (평지 보행 시 발 각도 형태에 따른 발바닥 압력 비교 연구)

  • Lee, Jeon-Hyeong;Kim, Ki-Chul;Kuk, Jung-Suk
    • PNF and Movement
    • /
    • v.12 no.2
    • /
    • pp.89-96
    • /
    • 2014
  • Purpose: The purpose of this study was to examine the influence of foot angles on plantar pressure and the center of pressure (COP) trajectory length during level walking. Methods: The study subjects were 30 female university students without orthopedic diseases in the foot. The foot angle was divided into three forms (out-toeing, normal, in-toeing). The subjects practiced each type of gait, and then performed each of level walking, three times, and their averages were calculated. A plantar pressure measurement instrument was used, and the maximum force was obtained by dividing the foot into nine regions covering the anterior medial-lateral, middle medial-lateral, and posterior medial-lateral. The COP trajectory length was statistically processed by obtaining medial-lateral, anterior-posterior, and entire travel distance. Results: During normal walking, the maximum force was significantly higher in the anterior lateral than in the other areas, and the COP trajectory length was significantly shorter in the front-back and entire travel distances (p<0.05). During stair climbing. Conclusion: Walking at abnormal foot angles does not cause appreciable problems in the short term as pressure is concentrated on a specific plantar part. However, it becomes the cause of deformed foot structures and can result in musculoskeletal disabilities in the long term. Therefore, a kinesiatrics-based intervention is required to maintain normal foot angles.