• Title/Summary/Keyword: Distance Geometry

Search Result 361, Processing Time 0.033 seconds

Estimation of Bed Form Friction Coefficients using ADCP Data

  • Lee, Minjae;Park, Yong Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.63-63
    • /
    • 2021
  • Bed shear stress is important variable in river flow analysis. The bed shear stress has an effects on bed erosion, sediment transport, and mean flow characteristics. Quadratic formula to estimate bed shear stress is widely used, 𝜏=𝜌cfu|u| in which friction coefficient, cf, needs to be assigned to numerical models. The aim of this study is to estimate Chezy coefficient using bathymetry data measured by ADCP. Bed form geometry variables will be estimated form bed profile, then Chezy coefficient will be determined using estimated bed form geometry variables in order to set friction coefficient to numerical model. From the probability density function obtained from the bathymetry data, Chezy coefficient will be randomly generated since Chezy coefficient is not uniform over the space and it does not depend on spatial variables such as water depth and distance from river bank. Numerical test will be performed to find to demonstrate randomly extracted Chezy coefficient is appropriate. The result of this study is valuable in that the friction coefficient is estimated in consideration of the bed profile, and as a result, uncertainty of the friction coefficient can be reduced.

  • PDF

Parametric Shape Design and CNC Tool Path Generation of a Propeller Blade (프로펠러 블레이드의 형상설계 및 CNC 공구경로 생성)

  • 정종윤
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.8
    • /
    • pp.46-59
    • /
    • 1998
  • This paper presents shape design, surface construction, and cutting path generation for the surface of marine ship propeller blades. A propeller blade should be designed to satisfy performance constraints that include operational speed which impacts rotations per minutes, stresses related to deliverable horst power, and the major length of the marine ship which impacts the blade size and shape characteristics. Primary decision variables that affect efficiency in the design of a marine ship propeller blade are the blade diameter and the expanded area ratio. The blade design resulting from these performance constraints typically consists of sculptured surfaces requiring four or five axis contoured machining. In this approach a standard blade geometry description consisting of blade sections with offset nominal points recorded in an offset table is used. From this table the composite Bezier surface geometry of the blade is created. The control vertices of the Hazier surface patches are determined using a chord length fitting procedure from tile offset table data. Cutter contact points and path intervals are calculated to minimize travel distance and production time while maintaining a cusp height within tolerance limits. Long path intervals typically generate short tool paths at the expense of increased however cusp height. Likewise, a minimal tool path results in a shorter production time. Cutting errors including gouging and under-cut, which are common errors in machining sculptured surfaces, are also identified for both convex and concave surfaces. Propeller blade geometry is conducive to gouging. The result is a minimal error free cutting path for machining propeller blades for marine ships.

  • PDF

An Experimental Study on Optimizing for Tandem Gas Metal Arc Welding Process (탄뎀 가스메탈아크 용접공정의 최적화에 관한 실험적 연구)

  • Lee, Jongpyo;Kim, Illsoo;Lee, Jihye;Park, Minho;Kim, Youngsoo;Park, Cheolkyun
    • Journal of Welding and Joining
    • /
    • v.32 no.2
    • /
    • pp.22-28
    • /
    • 2014
  • To enhance productivity and provide high quality production material in a GMA welding process, weld quality, productivity and cost reduction affects the number of process variables. In addition, a reliable welding process and conditions must be implemented to reduce weld structure failure. In various industries the welding process mathematical model is not fully formulated for the process parameter and on the welding conditions, therefore only partial variables can be predicted. The research investigates the interaction between the welding parameters (welding speed, distance between electrodes, and flow rate of shielding gas) and bead geometry for predicting the weld bead geometry (bead width, bead height). Taguchi techniques are applied to bead shape to develope curve equation for predicting the optimized process parameters and quality characteristics by analyzing the S/N ratio. The experimental results and measured error is within the range of 10% presenting satisfactory accuracy. The curve equation was developed in such a way that you can predict the bead geometry of constructed machinery that can be used for making tandem welding process.

A Study on the Effects of Intake Port Geometry on In-Cylinder Swirl Flow Field in a Small D.I. Diesel Engine (직접분사식 소형 디젤엔진의 실린더내 스월 유동장에 미치는 흡기포트의 형상에 관한 연구)

  • Lee, Ki-Hyung;Han, Yong-Taek;Jeong, Hae-Young;Leem, Young-Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.38-45
    • /
    • 2004
  • This paper studies the effects of intake port configuration on the swirl that is key parameter in the flow field of direct injection diesel engines. In-cylinder flow characteristics is known to have significant effects on fuel air mixing, combustion and emissions. To investigate the swirl flow generated by various intake ports, steady state flow tests were conducted to evaluate the swirl. Helical port geometry, SCV shape and bypass were selected as the design parameters to increase the swirl flow and parametric study was performed to choose the optimal port shape that would generate a high swirl ratio efficiently. The results revealed that a key factor in generating a high swirl ratio was to suitably control the direction of the intake air flow passing through the valve seat. For these purposes, we changed the distance of helical and tangential port as well as installed bypass near the valve seat and the effects of intake port geometry on in-cylinder flow field were visualized by a laser sheet visualization method. From the experimental results, we found that the swirl ratio and mass flow rate had a trade off relation. In addition, the result indicates that the bypass is a effective method to increase the swirl ratio without sacrificing mass flow rate.

A Study on Evaluation of Consistency Using 3-Dimensional Sight Distance (3차원시거를 이용한 도로일관성 평가에 관한 연구)

  • Park, Je-Jin;Oh, Young-Wook;Kang, Jeong-Gyu;Ha, Tae-Jun
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.3
    • /
    • pp.187-197
    • /
    • 2008
  • While driving a highway, A driver gets lots of information through geometrical structure, traffic situation, signs on the road. He gets most of the information by visual sense. Acceleration or deceleration and driving direction depend on sight distance. Therefore, it's essential to secure a driver's sight distance for a safe drive. However, design guides of geometrical structure and sight distance suggest respective standards of horizontal and vertical alignment. They do not indicate quantitative standard of combined alignment. Currently, element separated on a two-dimensional projected plane are available, but they do not guarantee safe and pleasant design. I will use the existent model analysing three-dimensional sight distance through mathematical calculation and sort a variety of geometrical structure element and type. In these researches, we will look at how much three-dimensional sight distance is overestimated or underestimated compared to two-dimensional. I will develop a program which predicts traffic velocity on the curvature of two-lane provincial road. stopped sight distance and three-dimensional sight distance will be compared at a predicted drive velocity. I will suggest the way to evaluate road consistency.

Numerical Study on the Effect of Reactor Internal Structure Geometry Treatment Method on the Prediction Accuracy for Scale-down APR+ Flow Distribution (원자로 내부 구조물 형상 처리 방법이 축소 APR+ 유동분포 예측 정확도에 미치는 영향에 관한 수치적 연구)

  • Lee, Gong Hee;Bang, Young Seok;Woo, Sweng Woong;Cheong, Ae Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.3
    • /
    • pp.271-277
    • /
    • 2014
  • Internal structures, especially those located in the upstream of a reactor core, may have a significant influence on the core inlet flow rate distribution depending on both their shapes and the relative distance between the internal structures and the core inlet. In this study, to examine the effect of the reactor internal structure geometry treatment method on the prediction accuracy for the scale-down APR+ flow distribution, simulations with real geometry modeling were conducted using ANSYS CFX R.14, a commercial computational fluid dynamics software, and the predicted results were compared with those of the porous medium assumption. It was concluded that the core inlet flow distribution could be predicted more accurately by considering the real geometry of the internal structures located in the upstream of the core inlet. Therefore, if sufficient computational resources are available, an exact representation of these internal structures, for example, lower support structure bottom plate and ICI nozzle support plate, is needed for the accurate simulation of the reactor internal flow.

Potential Energy Curves and Geometrical Structure Variations for [MX4]2- : M=Ni(II), Pd(II), Pt(II); X=Cl-, Br-) Dissociating into ([MX3]- + X-) : Ab Initio Study

  • Park, Jong-Keun;Kim, Bong-Gon;Koo, In-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1795-1802
    • /
    • 2005
  • Potential energy curves and internuclear (M-X) distance variations for dissociation reactions of $[MX_4]^{2-}$ into ($[MX_3]^-$ + $X^-$) have been calculated using ab initio Hartree-Fock (HF), second order M$\ddot{o}$ller-Plesset perturbation (MP2), and Density Functional Theory (DFT) methods with a triple zeta plus polarization (TZP) basis set. The equilibrium geometrical structures of $[MX_4]^{2-}$ are optimized to tetrahedral geometry for $[NiX_4]^{2-}$ and square planar geometry for ($[PdX_4]^{2-}$ and $[PtX_4]^{2-}$). The bond (M-X) distances of $[NiCl_4]^{2-}$, $[NiBr_4]^{2-}$, $[PdCl_4]^{2-}$, $[PdBr_4]^{2-}$, $[PtCl_4]^{2-}$, and $[PtBr_4]^{2-}$ at the DFT level are 2.258, 2.332, 2.351, 2.476, 2.367, and 2.493 $\AA$, respectively. The dissociation energies for the bond dissociation of ($[MX_3]^-$${\cdot}{\cdot}{\cdot}$$X^-$) at the DFT level are found to be 4.73 eV for $[NiCl_4]^{2-}$, 4.89 eV for $[NiBr_4]^{2-}$, 4.93 eV for $[PdCl_4]^{2-}$, 5.57 eV for $[PdBr_4]^{2-}$, 5.44 eV for $[PtCl_4]^{2-}$, and 5.87 eV for $[PtBr_4]^{2-}$. As the (M${\cdot}{\cdot}{\cdot}$X) distance of ($[MX_3]^-$${\cdot}{\cdot}{\cdot}$$X^-$) increases, the distance variation (Rt) of trans (M-X) bond at the trans-position is shorter than those (Rc) of two cis (M-X) bonds at the cisposition. Simultaneously the atomic charge variation of trans-X atom is more positive than those of equilibrium $[MX_4]^{2-}$ structures, while the variation of leaving X group is more positive.

The Mechanical Sensitivity at Interfaces between Bone and Interbody Cage of Lumbar Spine Segments (Lumbar spine 의 뼈와 Interbody cage의 접촉면에서 기계공학적 민감성 고찰)

  • Kim Y.
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.3 s.61
    • /
    • pp.295-301
    • /
    • 2000
  • It is known that among many factors, relative micromotion at bone/implant interfaces can hinder bone ingrowth into surface pores of an implant. Loading conditions, mechanical properties of spinal materials, friction coefficients at the interfaces and geometry of spinal segments would affect the relative micromotion and spinal stability. A finite clement model of the human lumbar spine segments (L4-L5) was constructed to investigate the mechanical sensitivity at the interfaces between bone and cage. Relative micromotion. Posterior axial displacement. bone stress, cage stress and friction force were predicted in changes of friction coefficients, loading conditions. bone density and age-related material/geometric properties of the spinal segments. Relative micromotion (slip distance in a static loading means relative micromotion in routine activity) at the interfaces increased significantly as the mechanical properties of cancellous bone, annulus fibers or/and ligaments decrease or/and as the friction coefficient at the interfaces decreases. The contact normal force at the interfaces decreased as cancellous bone density decreases or/and as the friction coefficient increases A significant increase of slip distance at anterior annulus occurred with an addition of torsion to compressive preload. Relative micromotion decreased with an increase of disc area. In conclusion. relative micromotion, stress response. Posterior axial displacement and contact normal force are sensitive to the friction coefficient of the interfaces, bone density, loading conditions and age-related geometric/material changes.

  • PDF

In-Situ Gamma Spectrometry Research Analysis and Radiation Efficiency Sensitivity Evaluation (감마핵종 In-Situ 측정 연구 동향 분석 및 방사능 측정 효율 민감도 평가)

  • Hyun Jun Na;Hyeok Jae Kim;Seong Yeon Lee;Min Woo Kwak;Kwang Pyo Kim
    • Journal of Radiation Industry
    • /
    • v.17 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • Since a large amount of radioactive waste is expected to be generated due to permanent shutdown of many nuclear power plants, it is necessary to prepare efficient management methods for radioactive waste. Therefore, there is a need for a based study to apply the In-Situ gamma spectrometry, which can simplify the measurement procedure. The purpose of this study is to analyze research cases of In-Situ gamma spectrometry and to analyze the sensitivity of measurement according to influencing factors on In-Situ gamma spectrometry. Research cases of five institutions, including the CERN and the Imperial College Reactor Centre (ICRC), were selected as the institutions to be investigated. Research on the In-Situ gamma spectrometry was conducted on the satisfaction of the acceptance criteria for radioactive waste and the analysis of residual radioactivity in the site. In-Situ Objective Counting System (ISOCS) was used as a major measuring device. Sampling and computer code were used to verify the analysis results. For evaluation of measuring sensitivity according to influencing factors on In-Situ gamma spectrometry, the thickness of the measurement target, the distance between the detector and the target, the angle of the collimator, and the contamination location were performed using ISOCS's Geometry Composer. In every case, based on 122 keV, the efficiency decreased as the energy increased in the high energy region, and the efficiency decreased as the energy decreased in the low energy region. As the target thickness increased, the efficiency decreased, and as the distance between target and detector increased, the efficiency decreased. As the distance between contamination and detector increased, the efficiency decreased, and as the angle of the collimator increased, the measurement efficiency increased. However, when simulating the measurement situation using Geometry Composer, the background is not considered, and the probability of incident in the background increases as the angle increases, so further research needs to be conducted in consideration of these. This study can be utilized when applying the In-Situ gamma spectrometry of radioactive waste clearance in the future.

A Preprocessing Algorithm for Layered Depth Image Coding (계층적 깊이영상 정보의 압축 부호화를 위한 전처리 방법)

  • 윤승욱;김성열;호요성
    • Journal of Broadcast Engineering
    • /
    • v.9 no.3
    • /
    • pp.207-213
    • /
    • 2004
  • The layered depth image (LDI) is an efficient approach to represent three-dimensional objects with complex geometry for image-based rendering (IBR). LDI contains several attribute values together with multiple layers at each pixel location. In this paper, we propose an efficient preprocessing algorithm to compress depth information of LDI. Considering each depth value as a point in the two-dimensional space, we compute the minimum distance between a straight line passing through the previous two values and the current depth value. Finally, the minimum distance replaces the current attribute value. The proposed algorithm reduces the variance of the depth information , therefore, It Improves the transform and coding efficiency.