• Title/Summary/Keyword: Distance Geometry

Search Result 361, Processing Time 0.039 seconds

Simulations of Capacitively Coupled Plasmas Between Unequal-sized Powered and Grounded Electrodes Using One- and Two-dimensional Fluid Models

  • So, Soon-Youl
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.5
    • /
    • pp.220-229
    • /
    • 2004
  • We have examined a technique of one-dimensional (1D) fluid modeling for radio-frequency Ar capacitively coupled plasmas (CCP) between unequal-sized powered and grounded electrodes. In order to simulate a practical CCP reactor configuration with a grounded side wall by the 1D model, it has been assumed that the discharge space has a conic frustum shape; the grounded electrode is larger than the powered one and the discharge space expands with the distance from the powered electrode. In this paper, we focus on how much a 1D model can approximate a 2D model and evaluate their comparisons. The plasma density calculated by the 1D model has been compared with that by a two-dimensional (2D) fluid model, and a qualitative agreement between them has been obtained. In addition, 1D and 2D calculation results for another reactor configuration with equal-sized electrodes have also been presented together for comparison. In the discussion, four CCP models, which are 1D and 2D models with symmetric and asymmetric geometries, are compared with each other and the DC self-bias voltage has been focused on as a characteristic property that reflects the unequal electrode surface areas. Reactor configuration and experimental parameters, which the self-bias depends on, have been investigated to develop the ID modeling for reactor geometry with unequal-sized electrodes.

Center Determination for Cone-Beam X-ray Tomography

  • Narkbuakaew, W.;Ngamanekrat, S.;Withayachumnankul, W.;Pintavirooj, C.;Sangworasil, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1885-1888
    • /
    • 2004
  • In order to render 3D model of the bone, the stack of cross-sectional images must be reconstructed from a series of X-ray radiographs, served as the projections. In the case where the distance between x-ray source and detector is not infinite, image reconstruction from projection based on parallel-beam geometry provides an error in the cross-sectional image. In such case, image reconstruction from projection based on conebeam geometry must be exercised instead. This paper is devoted to the determination of detector center for SART conebeam Technique which is critically effect the performance of the resulting 3D modeling.

  • PDF

Numerical Analysis on Heat Transfer Characteristics of a Heat Pipe Type Solar Thermal Receiver According to Internal Geometry Variation (고온 히트파이프식 태양열 흡수기의 내부형상 변화에 따른 열전달 특성의 수치해석)

  • Park, Young-Hark;Boo, Joon-Hong;Kang, Yong-Heack
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.165-168
    • /
    • 2008
  • A numerical analysis was conducted to predict the heat transfer characteristics of a solar receiver which is subject to very high heat fluxes and temperatures for solar thermal applications. The concentration ratio of the solar receiver ranges 1000 and the concentrated heat is required to be transported to a certain distance for specific applications. This study deals with a solar receiver according to internal geometry variation incorporating high-temperature heat pipe. The isothermal characteristics in the receiver section is of major concern. The diameter of the solar thermal receiver was 120 mm and the length was 400 mm and the angle of receiver end wall set $90^{\circ},\;60^{\circ},\;45^{\circ},\;30^{\circ}$. And the diameter of the heat pipe was 12.7 mm, 48 axial channels of the same dimensions were attached to the outer wall of the receiver with even spacing in the circumferential direction. The channels are changed to high-temperature sodium heat pipes. Commercial softwares were employed to deal with the radiative heat transfer inside the receiver cavity and the convection heat transfer along the channels. The numerical results are compared and analyzed from the view point of high-temperature solar receiver.

  • PDF

동서양인의 대퇴골 비교연구

  • Kang, Gon;Kim, Cheol-Saeng;Yoo, Myung-Chul
    • Journal of Biomedical Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.23-30
    • /
    • 1993
  • We investigated the structural geometry of thirty-eight Korean femurs. The purpose of this study is to identify major geometrical differences between Korean femurs and others that we believe belong to Caucasians so that we would be able to get insights into the femoral component design that fits Asians including Koreans. We utilized computerized nomography (CT) images of femurs extracted from cadavers. The CT images were transformed into bitmap data by using a film scanner, and then analyzed by using a commercially available software called Image v.1.0 and a Macintosh loci computer. The resulting data were compared with already published data. The major results show that the geometry of the Korean femurs is significantly different from that of Caucasians: (1) the anteversion angle and the canal (tare Index are greater by the amount of approximately 8" and 0.5, respectively, (2) the shape of the isthmus cross section is more round , and (3) the distance between the lesser trochanter and the proximal border of the isthmus is shorter by about 15 mm. The results suggested that the femoral component suitable for Asians should be dif- ferent (rom the currently-used components designed and manufactured mostly by European or American companies.

  • PDF

Insulin Releasing Polymers for Treatment of Diabetes

  • Kim, S.W.;T. Okano;L.A. Seminoff;Jeong, Seo-Young
    • Journal of Biomedical Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.113-116
    • /
    • 1986
  • We investigated the structural geometry of thirty-eight Korean femurs. The purpose of this study is to identify major geometrical differences between Korean femurs 3nd others that we believe belong to Caucasians so that we would be able to get insights into the femoral component design that fits Asians including Koreans. We utilized computerized tomography (CT) images of femurs extracted from cadavers. The CT images were transformed into bitmap data by using a film scanner, and then analyzed by using a commercially available software called Image v.1.0 and a Macintosh IIci computer.The resulting data were compared with already published data. The major results show that the geometry of the Korean femurs is significantly different from that of Caucasians: (1) the anteversion angle and the canal flare index are greater by the amount of approximately 8˚ and 0.5, respectively, (2) the shape of the isthmus cross section is more round, and (3) the distance between the teaser trochanter and the proximal border of the isthmus is shelter by about 15 mm. The results suggested that the femoral component suitable for Asians should be different from the currently-used components designed and manufactured mostly by European or American companies.

  • PDF

Lateral Pressure on Retaining Wall Close to Stable Slope (안정사면에 인접한 옹벽에 작용하는 수평토압)

  • Jeong, Seong-Gyo;Jeong, Jin-Gyo;Lee, Man-Ryeol
    • Geotechnical Engineering
    • /
    • v.13 no.5
    • /
    • pp.19-34
    • /
    • 1997
  • Classical earth pressure theories normally assume that ground condition remains uniform for considerable distance from the wall, and that the movement of the wall is enough to result in the development of an active pressure distribution. In the case of many low gravity walls in cut, constructed, for example, by using gabions or cribs, this is not commonly the case. In strong ground a steep temporary face will be excavated for reasons of economy, and a thin wedge of backfill will be placed behind the wall following its construetion. A designer then has the difficulty of selecting appropriate soil parameters and a reasonable method of calculating the earth pressure on the w리1. This paper starts by reviewing the existing solutions applicable to such geometry. A new silo and a wedge methods are developed for static and dynamic cases, and the results obtained from these are compared with two experimental results which more correctly mod el the geometry and strength of the wall, the fill, and the soil condition. Conclusions are drawn concerning both the magnitute and distribution of earth pressures to be supported by such walls.

  • PDF

A Study on the Reactor Configuration and Thermal Conditions for the Growth of High Quality Thin Film of GaN Layer (고품질 질화물 반도체 박막 성장을 위한 반응로 구조 및 열적 조건에 관한 연구)

  • Kim, Jin-Taek;Baek, Byung-Joon;Lee, Cheul-Ro;Pak, Bock-Choon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1632-1639
    • /
    • 2004
  • Numerical calculation has been performed to investigate the transport phenomena in the horizontal reactor which has two different gas inlets for MOCVD(metalorganic chemical vapor deposition). The full elliptic governing equations for continuity, momentum, energy and chemical species are solved by using the commercial code FLUENT. It is investigated how thermal characteristics, reactor geometry, and the operating parameters affect flow fields, mass fraction of each reactants. The numerical simulations demonstrate that flow rate of each species, inlet geometry of the reactor, and its distance from the susceptor as well as the inclination of upper wall of reactor can be used effectively to optimize reactor performance. The commonly used idealized boundary conditions are also investigated to predict flow phenomena in the actual deposition system.

The Design of Array Geometry in 2-D Multiple Baseline Direction Finding (2차원 멀티베이스라인 방향탐지 배열 구조 설계)

  • Park, Cheol-Sun;Kim, Dae-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.10A
    • /
    • pp.988-995
    • /
    • 2006
  • In this Paper, we Present a nonharmonic may geometry design method using Euclidan minimum distance function in difference Phase spaces for 2-D (azimuth/elevation) multiple baseline antenna may which has a way to reduce the number of sensor antennas while maintaining accurate DOA estimate. The major advantages of our approach is that even the shortest interelement spacing can be larger than half-wavelength and is not limit13d to linear and it can be applied successfully to any array configuration. In multiple signals impinging situation, the performance simulation results of superresolution algorithms shows the effectiveness of the proposed method. Also the 2-D asymmetric may using the Proposed method is designed and the Performance of the manufactured away through the experimental test is verified.

Compensation Design to Reduce Springback in Sheet Metal Forming of 1.2GPa Ultra High Strength Steel (1.2GPa급 강판 판재 성형에서 스프링백 감소를 위한 금형 보상 설계)

  • Kwon, S.H.;Lee, H.S.;Lee, Y.S.;Kim, S.W.;Jung, C.Y.;Hong, S.
    • Transactions of Materials Processing
    • /
    • v.25 no.5
    • /
    • pp.301-305
    • /
    • 2016
  • The manual modification of stamping die has widely been used in order to reduce springback after sheet metal forming. When UHSS (Ultra High Strength Steel) is used in sheet metal forming, the die design considering springback compensation is more difficult because higher strength sheet has more springback. In this study, the optimization method was used in order to design die geometry considering springback compensation after forming of 1.2GPa UHSS. Die geometries were defined as design variables and the springback distance from the die surface was conducted as object function in optimization process. The optimized die geometry considering springback compensation was performed using finite element and optimization analysis. The simulation results such as thickness distribution and springback amount were compared with measured data using 3D optical measurement system (GOM ARGUS, ATOS). And the prediction of springback amount showed a good agreement within test results.

Study of ion beam shaping of an anode-type ion source coupled with a Whenelt mask

  • Huh, Yunsung;Hwang, Yunseok;Kim, Jeha
    • Applied Science and Convergence Technology
    • /
    • v.27 no.4
    • /
    • pp.70-74
    • /
    • 2018
  • We fabricated an anode-type ion source driven by a charge repulsion mechanism and investigated its beam shape controlled by a Whenelt mask integrated at the front face of the source. The ion beam shape was observed to vary by changing the geometry of the Whenelt mask. As the angle of inclination of the Whenelt mask was varied from $40^{\circ}$ to $60^{\circ}$, the etched area at a thin film was reduced from 20 mm to 7.5 mm at the working distance of 286 mm, and the light transmittance through the etched surface was increased from 78% to 80%, respectively. In addition, for the step height difference, ${\Delta}$ between the inner mask and the outer mask of ${\Delta}=0$, -1 mm, and +1 mm, we observed the ion beam shape was formed to be collimated, diverged, and focused, respectively. The focal length of the focused beam was 269 mm. We approved experimentally a simple way of controlling the electric field of the ion beam by changing the geometry of the Whenelt mask such that the initial direction of the ion beam in the plasma region was manipulated effectively.