• Title/Summary/Keyword: Distal attachment

Search Result 52, Processing Time 0.027 seconds

Stress-strain distribution at bone-implant interface of two splinted overdenture systems using 3D finite element analysis

  • Hussein, Mostafa Omran
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.3
    • /
    • pp.333-340
    • /
    • 2013
  • PURPOSE. This study was accomplished to assess the biomechanical state of different retaining methods of bar implant-overdenture. MATERIALS AND METHODS. Two 3D finite element models were designed. The first model included implant overdenture retained by Hader-clip attachment, while the second model included two extracoronal resilient attachment (ERA) studs added distally to Hader splint bar. A non-linear frictional contact type was assumed between overdentures and mucosa to represent sliding and rotational movements among different attachment components. A 200 N was applied at the molar region unilaterally and perpendicular to the occlusal plane. Additionally, the mandible was restrained at their ramus ends. The maximum equivalent stress and strain (von Mises) were recorded and analyzed at the bone-implant interface level. RESULTS. The values of von Mises stress and strain of the first model at bone-implant interface were higher than their counterparts of the second model. Stress concentration and high value of strain were recognized surrounding implant of the unloaded side in both models. CONCLUSION. There were different patterns of stress-strain distribution at bone-implant interface between the studied attachment designs. Hader bar-clip attachment showed better biomechanical behavior than adding ERA studs distal to hader bar.

A STRESS ANALYSIS OF THE IMPLANT - SUPPORTED OVERDENTURE USING STRAIN GAUGE (스트레인 게이지를 이용한 임플랜트 지지 오버덴춰의 응력분석)

  • Cho, Hye-Won;Kwon, Joo-Hong;Lee, Wha-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.1
    • /
    • pp.93-103
    • /
    • 1999
  • Stress distribution on mandibular implants supporting overdentures were registered in vitro experimental model by means of 4 rosette gauges which were placed around the implant. The overdenture attachments used in this study were the Resilient Dolder bar, Rigid Bolder bar, Round bar, Hader bar & Dal-Ro attachment. An occlusal jig was placed on the overdenture and the loading sites were 3 points which mimicked working, balancing, and median relations. With 5 and 10kg loading, strains were measured by strain indicator(P-3500, Measurement group, Raleigh, USA), and using these data, maximum and minimum principal stresses and Von Mises stress were calculated and evaluated. The results were as follows : There was a tendency of high stress concentration in the lingual side of the implant, and in the buccal side low stress was developed regardless of the attachment systems. The resilient Bolder bar concentrated highest stress among the attachment systems, and the Round bar and the Dal-Ro attachment provided comparatively low stresses around the implant. The rigid Bolder bar concentrated high stress in the mesial side, and the Dal-Ro attachment developed tensile stress patterns in the lingual and distal sides of the implant at the balancing relation.

  • PDF

Microstructure of the biological attachment devices in the ladybug Harmonia axyridis (Coleoptera: Coccinellidae)

  • Moon, Myung-Jin;Kim, Hyo-Jeong;Kim, Hoon;Park, Jong-Gu
    • Animal cells and systems
    • /
    • v.16 no.6
    • /
    • pp.479-487
    • /
    • 2012
  • Biological attachment device is optimized in insect legs for attachment onto the variety of natural substrate. We have studied the microstructural characteristics of the tarsal appendages in the ladybug Harmonia axyridis using scanning electron microscopy to reveal the attachment system of their legs. The attachment devices are composed of claws and adhesive pads. The claws are connected with pretarsal segment, and their apical diverged hooks are developed to hold rough substrates. In contrast, the adhesive pads have an adhesive function onto smooth surface. The pads are interspersed at the ventral part of each tarsomere, and are composed of two kinds of hairy setae. The discoid tip seta (DtS) has a spoon-shaped endplate usually with a rounded concave structure, whereas the pointed tip seta (PtS) has a pointed tip, usually with a hooked endplate. While the PtS is broadly localized concentrically on the marginal area of both the proximal and distal pads, the DtS can be seen at the central areas of each adhesive pad except for the hind legs. Our findings demonstrate the presence of the direction-dependence pattern of the fibrillar system as well as a functional modification of the tenent setae to achieve proper contact with almost any kind of substrates.

Connect Attachment of Fixed Segmented Bridge (고정성 분할 브릿지의 연결 어태치먼트)

  • Kim, Nam-Joong
    • Journal of Technologic Dentistry
    • /
    • v.24 no.1
    • /
    • pp.127-138
    • /
    • 2002
  • There are some cases that dental prosthesis does not operate as properly as expected in oral mouth. The reasons are such as a distortion of the mandibular, a fault of impression taking system or an extrusion of remaining teeth. One of dental prostheses to consider in the situations is the attachment which connects segment bridge. Active discussions are managed on theoretical side of this field but few on clinical side of it, which must be considered first. Accordingly I'd like to suggest a theoretical background for connect attachment of fixed segmented bridge. 1. As a bridge gets longer, burden on dental ligament is increased and the hardness of a bridge is lessened. 2. The flexibility of a bridge increases in ratio to 3 multiplication of the length and decreases in ratio to 3 multiplication of the width of occlusal surface and base of pontic. 3. Precision rest is needed to cope with the shake of teeth and the difference of axis direction among abutments. 4. Female part of the precision rest should be on middle abutment distal and male one on mesial of pontic. 5. Segmented attachment can be efficiently used to cope with long span bridgework and also in case that one piece casting can't be done because of slant of abutment.

  • PDF

Anatomical study of the bone morphology of the anterior talofibular ligament attachment

  • Hitomi Fujishiro;Akimoto Nimura;Mizuki Azumaya;Soichi Hattori;Osamu Hoshi;Keiichi Akita
    • Anatomy and Cell Biology
    • /
    • v.56 no.3
    • /
    • pp.334-341
    • /
    • 2023
  • Anterior talofibular ligament (ATFL) injuries are the most common cause of ankle sprains. To ensure anatomically accurate surgery and ultrasound imaging of the ATFL, anatomical knowledge of the bony landmarks around the ATFL attachment to the distal fibula is required. The purpose of the present study was to anatomically investigate the ATFL attachment to the fibula with respect to bone morphology and attachment structures. First, we analyzed 36 feet using micro-computed tomography. After excluding 9 feet for deformities, the remaining 27 feet were used for chemically debrided bone analysis and macroscopic and histological observations. Ten feet of living specimens were observed using ultrasonography. We found that a bony ridge was present at the boundary between the attachments of the ATFL and calcaneofibular ligament (CFL) to the fibula. These two attachments could be distinguished based on a difference in fiber orientation. Histologically, the ATFL was attached to the anterodistal part of the fibula via fibrocartilage anterior to the bony ridge indicating the border with the CFL attachment. Using ultrasonography in living specimens, the bony ridge and hyperechoic fibrillar pattern of the ATFL could be visualized. We established that the bony ridge corresponded to the posterior margin of the ATFL attachment itself. The ridge was obvious, and the superior fibers of the ATFL have directly attached anteriorly to it. This bony ridge could become a valuable and easy-to-use landmark for ultrasound imaging of the ATFL attachment if combined with the identification of the fibrillar pattern of the ATFL.

EFFECT OF ANCHORAGE SYSTEMS ON LOAD TRANSFER WITH MANDIBULAR IMPLANT OVERDENTURES : A THREE-DIMENSIONAL PHOTOELASTIC STRESS ANALYSIS (하악 임플란트 overdenture에서 anchorage system이 하중전달에 미치는 영향)

  • Kim Jin-Yeol;Jeon Young-Chan;Jeong Chang-Mo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.5
    • /
    • pp.507-524
    • /
    • 2002
  • Load transfer of implant overdenture varies depending on anchorage systems that are the design of the superstructure and substructure and the choice of attachment. Overload by using improper anchorage system not only will cause fracture of the framework or screw but also may cause failure of osseointegration. Choosing anchorage system in making prosthesis, therefore, can be considered to be one of the most important factors that affect long-term success of implant treatment. In this study, in order to determine the effect of anchorage systems on load transfer in mandibular implant overdenture in which 4 implants were placed in the interforaminal region, patterns of stress distribution in implant supporting bone in case of unilateral vertical loading on mandibular left first molar were compared each other according to various types of anchorage system using three-dimensional photoelastic stress analysis. The five photoelastic overdenture models utilizing Hader bar without cantilever using clips(type 1), cantilevered Hader bar using clips(type 2), cantilevered Hader bar with milled surface using clips(type 3), cantilevered milled-bar using swivel-latchs and frictional pins(type 4), and Hader bar using clip and ERA attachments(type 5), and one cantilevered fixed-detachable prosthesis(type 6) model as control were fabricated. The following conclusions were drawn within the limitations of this study, 1. In all experimental models. the highest stress was concentrated on the most distal implant supporting bone on loaded side. 2. Maximum fringe orders on ipsilateral distal implant supporting bone in a ascending order is as follows: type 5, type 1, type 4, type 2 and type 3, and type 6. 3. Regardless of anchorage systems. more or less stresses were generated on the residual ridge under distal extension base of all overdenture models. To summarize the above mentioned results, in case of the patients with unfavorable biomechanical conditions such as not sufficient number of supporting implants, short length of the implant and unfavorable antero-posterior spread. selecting resilient type attachment or minimizing distal cantilever bar is considered to be appropriate methods to prevent overloading on implants by reducing cantilever effect and gaining more support from the distal residual ridge.

A clinical perspective on the anatomical study of digastric muscle

  • Nandini Prashanth Bhat;Suhani Sumalatha;Ashwija Shetty;Sushma Prabhath
    • Anatomy and Cell Biology
    • /
    • v.56 no.4
    • /
    • pp.441-447
    • /
    • 2023
  • One of the suprahyoid muscles is the digastric muscle which comprises anterior and posterior bellies joined by an intermediate tendon. Because of its close relationship with the submandibular gland, lymph nodes, and chief vessels of the neck, detailed knowledge about the morphometry of the digastric muscle is essential. The objective of the current cross-sectional evaluative study is to record morphometry along with the digastric muscle's origin, insertion, and variability. Forty human cadavers (25 males and 15 females) were dissected, and the head and neck regions were studied in detail. The attachment of the digastric muscle anterior belly to the digastric fossa of the mandible was noted, and the distal attachment of the posterior belly to the mastoid notch was traced. The length of the anterior belly from the digastric fossa to its intermediate tendon and the length of the posterior belly from the intermediate tendon to its mastoid attachment were measured. There is a fair correlation between the length of the neck and the length of the anterior and posterior belly. The study also identified two cases of bilateral accessory bellies of the anterior belly of the digastric. Normal morphometric data is provided by this study on details of the digastric muscle. It is significant from a clinical and surgical point of view as the muscle lies in proximity to the important structures of the neck.

Topographical measurement of the attachments of the central band of the interosseous membrane on interosseous crests of the radius and ulna

  • Jang, Suk-Hwan;Kim, Kyung-Whan;Jang, Hyo Seok;Kim, Yeong-Seok;Kim, Hojin;Kim, Youngbok
    • Clinics in Shoulder and Elbow
    • /
    • v.24 no.4
    • /
    • pp.253-260
    • /
    • 2021
  • Background: To suggest a reasonable isometric point based on the anatomical consistency of interosseous membrane (IOM) attachment in association with topographic characteristics of the interosseous crests, the footprints of the central band (CB) of the IOM on the radial and ulnar interosseous crests (RIC and UIC) were measured. Methods: We measured the distance from the CB footprints from each apex of both interosseous crests in 14 cadavers and the angles between the forearm axis of rotation (AOR) and the distal slopes of the RIC and UIC in 33 volunteers. Results: The CB footprints lay on the downslope of both interosseous crests with its upper margin on average 3-mm proximal from the RIC's apex consistently in the radial length, showing normality (p>0.05), and on average 16-mm distal from the UIC's apex on the ulna without satisfying normality (p<0.05). The average angle between the UIC's distal slope and the AOR was 1.3°, and the RIC's distal slope to the AOR was 14.0°, satisfying the normality tests (p>0.05), and there was no side-to-side difference in both forearms (p<0.05). Conclusions: The CB attached to the downslope just distal to the RIC's apex constrains the radius to the UIC that coincides with the AOR of the forearm circumduction, maintaining itself both isometrically and isotonically.

Periodontal repair in dogs: effect of the modified calcium sulfate paste on the 1-wall intrabony defects (성견 1면 치조골 결손부에서 특수제조된 Calcium Sulfate Paste가 치주조직 치유에 미치는 영향)

  • Kim, Chong-Kwan
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.1
    • /
    • pp.153-171
    • /
    • 1999
  • The purpose of this study was to evaluate the effect of modified calcium sulfate paste on periodontal regeneration. l-wall intrabony defect(mesio-distal width: 4mm, depth: 4mm) was surgically created on the distal side of P2 and mesial side of p4 in four dogs. The control group(GFS) was treated with conventional flap operation alone, and the experimental group(CS) was treated with conventional flap operation with modified calcium sulfate paste application. Both control and experimental groups were sacrificed after 8weeks of healing period, The results of histological and histometric observations were as follows. 1. The length of the junctional epithelium was 0.41${\pm}$0.01mm in the control groups, 0.47${\pm}$0.01mm in the experimental group. 2. The connective tissue attachment was 0.28${\pm}$0.02mm(6.15${\pm}$0.28%) in the control group, 0.18${\pm}$0.01mm(3.41${\pm}$0.14%) in the experimental group. The control group showed more connective tissue attachment. 3. The new cementum formation was 3.80${\pm}$0.06mm(84.80${\pm}$0.33%) in the control group, 4.49${\pm}$0.06mm(87.57${\pm}$0.15%) in the experimental group. Both groups showed a lot of new cementum formation. 4. The new bone formation was 1.43${\pm}$0.03mm(32.37%) in the control group, 2.04${\pm}$O.09mm(40.94%) in the experimental group. 5. The inflamatory cells were observed partially around resorbed calcium sulfate in the connective tissue of the experimental group. 6. Partially resorbed calcium sulfate were found within the connective tissue, around alveolar bone, and in the newly formed alveolar bone, On the basis of these results, newly formed calcium sulfate paste enhanced new bone formation and new cementum formation. The resorption rate of calcium sulfate seems to be controlled by the add-in compounds. Thus research about biocompatibility and adequate resorptionrate is required to develop a improved material.

  • PDF

Effects of implant collar design on marginal bone and soft tissue (임플란트의 collar design이 변연골과 연조직에 미치는 영향)

  • Yoo, Hyun-Sang;Kang, Sun-Nyo;Jeong, Chang-Mo;Yun, Mi-Jung;Huh, Jung-Bo;Jeon, Young-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.1
    • /
    • pp.21-28
    • /
    • 2012
  • Purpose: The purpose of this study was to investigate the effects of implant collar design on marginal bone change and soft tissue response by an animal test. Materials and methods: Two types of Implant (Neobiotech Co. Seoul, Korea) that only differs in collar design were planted on two healthy Beagle dogs. The implants were divided into two groups, the first group with a beveled collar (Bevel Group) and the second group with "S" shaped collar (Bioseal group). Standardized intraoral radiographs were used to investigate the mesio-distal change of the marginal bone. Histological analysis was done to evaluate the bucco-lingual marginal bone resorption and the soft tissue response adjacent to the implant. Mann-Whitney test was done to compare the mesio-distal marginal bone change at equivalent time for taking the radiographs and the tissue measurements between the groups. Results: Radiographic and histological analysis showed that there was no difference in marginal bone change between the two groups (P>.05). Histological analysis showed Bioseal group had more rigid connective tissue attachment than the Bevel group. There was no difference in biological width (P>.05). Bevel group showed significantly longer junctional epithelium attachment and Bioseal group showed longer connective tissue attachment (P<.05). Conclusion: For three months there were no differences in marginal bone change between the Bevel group and the Bioseal group. As for the soft tissue adjacent to the implant, Bioseal group showed longer connective tissue attachment while showing shorter junctional epithelium attachment. There were no differences in biologic width.