• Title/Summary/Keyword: Dissolved gases analysis

Search Result 27, Processing Time 0.024 seconds

Development of Management Software for Transformers Based on Artificial Intelligent Analysis Technology of Dissolved Gases in Oil (지능형 유중가스 분석기술 기반 유입식 변압기 전산관리 프로그램 개발)

  • Sun Jong-Ho;Han Sang-Bo;Kang Dong-Sik;Kim Kwang-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.12
    • /
    • pp.578-584
    • /
    • 2005
  • This paper describes development of management software for transformers based on artificial intelligent analysis technology of dissolved gases in oil. Fault interpretation using the artificial intelligent analysis is performed by the artificial neural network and a rule based on the analysis of dissolved gases. The used gases are acetylene($C_{2}H_{2}$), hydrogen($H_2$), ethylene($C_{2}H_{4}$), methane($CH_4$), ethane($C_{2}H_{6}$), carbon monoxide(CO) and carbon dioxide($CO_2$). This software is mainly composed of gases input, fault's causes, expected fault's phenomena in detail, the decision on maintenance as well as report and gas trend windows. It is indicated that this is very powerful software for the efficient management of oil-immersed transformers using data analysis of gas components.

Review on the Relationship of Dissolved Gas Analysis and Internal Inspection of Transformer (변압기 절연재료 분석과 내부점검 결과와의 상관성 연구)

  • Park, Hyun-Joo;Nam, Chang-Hyun;Jung, Nyun-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1869-1873
    • /
    • 2010
  • For reliable operation of oil-filled electrical equipment, monitoring and maintenance of insulating oil is essential. Dissolved gas analysis(DGA) is widely used for monitoring faults in high voltage electrical equipment in service. Therefore, oil analysis should be monitored regularly during its service life. KEPCO has investigated thousands of dissolved gas analysis data since 1985, and conducted studies on the relationship of gas in oil analysis and internal inspection results of transformer. As the results, KEPCO revised criteria for transformer diagnosis and has applied it since 2008. Almost of 100 cases of internal inspection results since 2001 have been investigated. This paper presents the correlation of the fault-identifying gases with faults found in actual transformers and how should we approach to internal inspection of transformer by dissolved gas analysis.

A Study on the Age Degradation Kinetics of Pole Transformer Oil (주상변압기 절연유의 경년열화반응 속도론에 관한 연구)

  • 남영우
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.1
    • /
    • pp.99-105
    • /
    • 1997
  • In the paper, aging of insulating oil in pole transformer has been studied by performing accelerated thermal aging test. Dissolved gases were extracted by air bubbling method. Concentration of dissolved gases were modified by extraction ratio of each gases in insulating oil. Aging of insulating materials were proceeded by thermal degradation and oxidation reaction. Both of the reactions followed zeroch order kinetics. Formation rate equations for hydrocarbons, carbon oxides, and hydrogen were derived. It was conformed by gas analysis and UV-Visible spectrophotometric method that iron core and copper coil in pole transformer act as catalyst during the aging process.

  • PDF

전기집진기술의 현황과 장래전망(I)

  • 고명삼;이달우
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.1
    • /
    • pp.24-33
    • /
    • 1997
  • In this paper, aging of insulating oil in pole transformer has been studied by performing accelerated thermal aging test. Dissolved gases were extracted by air bubbling method. Concentration of dissolved gases were modified by extraction ratio of each gases in insulting oil. Aging of insulting materials were proceeded by thermal degradation and oxidation reaction. Both of the reactions followed zeroth order kinetics. Formation rate equations for hydrocarbons, carbon oxides, and hydrogen were derived. It was conformed by gas analysis and UV-visible spectrophotometric method that iron core and copper coil in pole transformer act as catalyst during the aging process.

  • PDF

Development of Power Transformer Maintenance System Using Intelligent Dissolved Gas in Oil Analysis (지능형 유중가스분석법을 이용한 전력용 변압기 관리시스템 개발)

  • Sun, Jong-Ho;Kim, Kwang-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.87-90
    • /
    • 2004
  • This paper describes development of power transformer maintenance system using intelligent dissolved gases in oil analysis. The used gases are acetylene(C2H2), hydrogen(H2), ethylene(C2H4), methane(CH4), ethane(C2H6), carbon monoxide(CO) and carbon dioxide(CO2). The rule and neural network based gas analysis methods are used for artificial intelligent diagnosis. It is indicated that this program is efficient for diagnosis of oil immersed transformers diagnosis from application of gas analysis data of serviced transformer which has local overheating

  • PDF

Characterisrics of Dissolved Gas Distribution in Oil with Thermal and Electrical Degradation in Oil Imersed Paper Insulation (유침 절연에서 전기적 및 열적 열화에 따른 유중가스분포특성)

  • Sun, Jong-Ho;Yi, Sang-Hwa;Kim, Kwang-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.6
    • /
    • pp.136-144
    • /
    • 2004
  • Dissolved gas in oil analysis has been used for fault diagnosis of oil immersed insulation. In this paper to improve the reliability in deciding the degradation causes of the oil immersed insulation, we carried out electrical and thermal degradations for the insulations, and analyzed the characteristics of dissolved gases distribution on each situation. As a result more reliable faults discrimination is possible if we use the interrelation of factors like key gases and gas compositions of hydrocarbon gases and ratios of CO/$CO_2$.

A study on Cause of Errors of Dissolved Gases Analysis in Transformer (변압기 유중 가스 진단 오차 원인에 대한 연구)

  • Cho, Sung-Min;Lee, Yang-Jin;Kim, Young-Sung;Kim, Jae-Chul;Kweon, Dong-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.141-143
    • /
    • 2006
  • Dissolved gas analysis (DGA) is widely used to detect incipient faults in oil-filled electrical equipment. KEPCO make a rule of DGA in 1985. They have been diagnosing power transformer using their DGA criteria. In this paper, we analysis the result of DGA data about transformer in the substation. We try to find out what is cause of an error in DGA diagnosis considering accuracy in extracting gases from mineral oil in transformer. The carbon-monoxide was primary reason of warning in DGA data. We specially consider that aging is a cause of generating of carbon-monoxide in power transformer.

  • PDF

Dissolved Gas Analysis of Environment-Friendly Vegetable Insulating Oils (친환경 식물성 절연유의 유중가스 분석)

  • Choi, Sun-Ho;Kim, Kwan-Sik;Huh, Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.4
    • /
    • pp.238-243
    • /
    • 2015
  • The vegetable insulating oils are substitute for the mineral oil in power transformer. Vegetable insulating oils has higher flash/fire point and biodegradability than conventional mineral oils. In this paper, we investigated the dissolved gas analysis of vegetable oils. In the experiment, I had to accelerated aging under the same conditions mineral oil and vegetable oils. Accelerated aging proceeded to about 100% of the life of oil-filled transformer. In addition, we performed gas analysis of insulating oil of accelerated aging progress. The experiment results of the five gases was measured with the exception of Hydrogen and Acetylene. The mineral oil and vegetable oils gas is generated in a similar tendency depending on the accelerated aging. As a result, vegetable oils, can be dissolved gas analysis by method such as mineral oil.

Intelligent Diagnosis System for DGA Using Fuzzy Pattern Classification and Neural Network (퍼지 패턴 분류와 뉴럴 네트워크를 이용한 지능형 유중가스 판정 시스템)

  • Cho, Sung-Min;Kweon, Dong-Jin;Nam, Chang-Hyun;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2084-2090
    • /
    • 2007
  • The DGA (Dissolved Gases Analysis) technique has been widely using for fault diagnosis of the power transformers. Some electric power utility company establishes the criteria of DGA to improve reliability, because of difference of operation environment and design of power transformer. In this paper, we introduce intelligent diagnosis system for DGA result of KEPCO (Korea Electric Power Cooperation). This system can classify patterns type of gases ratio that frequently occurs in recent result of gases analysis using Fuzzy Inference. The classification of Patterns let us know that major causes of gases generation based on type of patterns. Finally, Neural Network based on patterns diagnose transformer. NN was trained using result data of DGA of actually faulted transformers recently. Result of intelligent diagnosis system is right well in comparison with actual inner inspection of transformers.

A study on gas dissolved distribution in oil for simulated transformer thermal faults (변압기 열열화 모의 고장어 대한 유중가스 분포연구)

  • Sun, J.H.;Yi, S.H.;Kim, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1800-1802
    • /
    • 2003
  • This paper describes a study on gas dissolved distribution in oil for simulated transformer thermal faults. Experimental chamber was setup for simulation of transformer thermal faults or discharge in oil with or without insulation paper. The experimental results showed that dissolved gases in oil excluding the paper did not evolved upto $150^{\circ}C$. Hereafter the planned gas dissolved analysis will be continuously carried out for transformer fault conditions with or without insulation paper related to water absorption, arc and partial discharge.

  • PDF