• 제목/요약/키워드: Dissolved Mn

검색결과 134건 처리시간 0.029초

남극 아문젠해에서 해수 중 Mn의 분포 특성 (Manganese in Seawaters of the Amundsen Sea, Antarctic)

  • 장동준;최만식;박종규;박경규;홍진솔;이상훈;정진영
    • Ocean and Polar Research
    • /
    • 제41권2호
    • /
    • pp.63-77
    • /
    • 2019
  • In order to investigate the behavior and seasonal variability of Mn as one of the bio-essential metals in the Amundsen sea, which is known as the most biologically productive coastal area around the Antartica, seawaters were collected using a clean sampling system for 10 stations (96 ea) in 2014 (ANA04B) and for 12 stations (139 ea) in 2016 (ANA06B) surveys of RV ARAON. Dissolved and particulate Mn concentration varied in the range of 0.15-4.43 nmol/kg and <0.01 to 2.42 nM in 2014 and in the range of 0.25-4.15 nmol/kg and 0.01-2.64 nM in 2016, respectively. From the sectional distribution of dissolved and particulate Mn, it might be suggested that dissolved/particulate Mn was provided from iceberg melting and diffusion/resuspension from sediments, respectively. Although this sea is highly productive, there was little evidence regarding the biological origin of dissolved Mn, but particulate Mn only in sea ice and offshore areas could be explained as originating from organic matters, e.g. phytoplanktons. And it could be suggested that the subsurface maximum of dissolved Mn was formed by isopycnal transport of melting materials from ice wall to offshore. Compared to early (2014) summer, temperature, salinity, biomass, dissolved and particulate Mn in late (2016) summer indicated that temporal variations might be resulted from the reduction of ice melting and mCDW flow, which induced a reduction in resuspension. In addition, in the late summer, particles including biomass were reduced, which brought about a reduction in the removal rate of dissolved Mn.

만경강 하천변 충적 지하수의 용존 Fe와 Mn 거동에 대한 산화-환원 과정과 용해 평형의 효과 (Effect of Redox Processes and Solubility Equilibria on the Behavior of Dissolved Iron and Manganese in Groundwater from a Riverine Alluvial Aquifer)

  • 최범규;고동찬;하규철;전수현
    • 자원환경지질
    • /
    • 제40권1호
    • /
    • pp.29-45
    • /
    • 2007
  • 전라북도 전주시 지역의 만경강 하천변 충적 대수층에 심도 30m까지 설치된 다중 심도 관정을 이용하여 산화-환원 환경과 관련된 지하수의 생물지구화학적 특성을 조사하였다. 대체로 용존 산소(DO)가 1 mg/L이하의 혐기성 환경이 지배적이었으며, 10-20m 구간에서는 높은 농도의 Fe($14{\sim}37mg/L$)와 Mn($1{\sim}4mg/L$)이 나타나고 그 하부에서는 S(-II) 이온이 검출되었다. 용존 Fe와 Mn이 높은 구간에서는 $O_2,\;NO_3$가 거의 없고, 퇴적물내의 Fe와 Mn의 함량은 심도에 따라 큰 차이 없이 분포하고 있어 전자수용체로서 이용된 Fe(III), Mn(IV)의 환원에 의해 지하수내의 용존 Fe와 Mn의 농도가 높아진 것으로 볼 수 있다. 용존 농도에서 Mn이 Fe에 비해 상대적으로 농도가 높게 나타나는 구간이 더 넓다. 환원 과정에서 전자공여체(electron donor)로 이용될 수 있는 유기 탄소(DOC) 농도가 지하수면 부근에서 급격히 감소하는 것으로 보아 지하수내 유기물은 상부에서 유입되는 것으로 보인다. 20m 하부에서는 $SO_4$가 감소하고 S(-II) 이온이 검출되는 것으로 보아 상부 구간보다는 하부구간에서 $SO_4$ 환원작용이 활발함을 지시한다. 여러 산화-환원쌍으로부터 계산된 산화-환원 전위는 Fe를 포함하는 쌍들간을 제외하고는 모두 일치하지 않아 전체적으로 산화-환원적으로 비평형 상태에 있다고 볼 수 있다. 지하수면 부근을 제외하고는 siderite, rhodochrosite 등의 탄산염 광물의 포화지수가 -2에서 +1의 범위를 보여 이들 광물에 의해 각각 Fe(II), Mn(II) 이온의 농도가 지하수내에서 조절될 수 있음을 보여주며, 20m 하부 심도 구간에서 S(-II) 이온이 검출되는 지점에서는 Fe(II)의 경우 FeS 광물에 의해서도 농도가 조절될 수 있다.

The effect of the dissolved oxygen concentration on the production of manganese peroxidase by Phaenerochaete chrysosporium

  • 최수형;구만복
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 추계학술발표대회 및 bio-venture fair
    • /
    • pp.171-174
    • /
    • 2000
  • 본 연구는 용존산소의 양에 따른 MnP의 생산양상을 체계적으로 연구하였으며, 과량의 산소 공급 시 MnP 생산이 저해될 수 있음을 산소공급에 따른 과량의 $H_2O_2$생산 측면에서 설명하고 있다. 또한 보다 높은 MnP 생산을 위한 산소공급방법을 제시하고자 하였다.

  • PDF

The Behaviors of Trace Metals (Fe, Mn, Co, Cu, Cd, Zn and Pb) in the Han River Estuary, Korea

  • Lee, Chang-Bok;Choi, Man-Sik
    • Journal of the korean society of oceanography
    • /
    • 제36권3호
    • /
    • pp.59-71
    • /
    • 2001
  • In order to investigate the temporal variability of dissolved and particulate trace metals in the Han River, water samples were collected intermittently at two sites for 3 years (August 91 to December 94). Surface seawaters covering the range of salinity were also collected at the estuarine region to evaluate the role of estuary for the riverine fluxes of trace metals within the estuary during October 95 and 96. During the study period, dissolved metal concentrations in riverwaters varied by a factor of 5-10 for Fe, Ni, Co and Cu and 50-100 for Mn, Cd and Pb depending upon the water level; high concentration during the low water and low concentration in high water period except for Fe. The concentration of dissolved Fe increased with increasing water discharge. These concentration-discharge relationships of the studied trace metals are explained by the successive dilution of waters from two different origins, which can be presumably identified as anthropogenic discharges and watershed flushing. Although estuarine waters at early mixing region were not collected due to the difficulty of sampling, mixing behaviors of metals were inferred from the concentration-salinity relationships through the laboratory mixing experiment and field sampling, and distribution coefficients between dissolved and labile particulate phases. It is suggested that the Han River estuary plays a role of accumulating Fe, Mn, Co and Pb from riverine sources due to high turbidity caused by strong tidal current, whereas this system serves as a source of dissolved Cd due to release caused by extended residence time of riverine particles.

  • PDF

낙동강변 지하수 및 지표수의 주요원소 용존 농도 결정에 대한 막필터 공극 크기의 영향 분석 (Evaluating Effects of Membrane Filter Pore Sizes on Determination of Dissolved Concentrations of Major Elements in Groundwater and Surface Water Near Nakdong River)

  • 김보아;고동찬;하규철
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제20권4호
    • /
    • pp.31-40
    • /
    • 2015
  • Various types of inorganic and organic colloids are present in natural water including groundwater. Previous studies showed that Fe, Mn and Al are colloid-forming elements and dissolved concentrations can be erroneous for these elements if water samples are not properly filtered. Dissolved concentrations of elements including Ca, Na, Mg, K, Fe, Mn, Si and Al in groundwater from alluvial and bedrock aquifers, and surface water near Nakdong River were determined to evaluate effects of colloids on dissolved concentrations in natural water samples using various pore sizes of filters. Groundwater is mostly anoxic and have elevated concentrations of Fe and Mn, which provides a unique opportunity to observe the effects of colloids on dissolved concentrations of colloid-forming elements. Membrane filters with four kinds of pore sizes of 1000 nm, 450 nm, 100 nm, and 15 nm were used for filtration of water samples. Concentrations of dissolved concentrations in each filtrate did not show significant differences from 1000 nm to 100 nm. However, concentrations of all elements considered were decreased in the filtrates obtained using 15 nm pore size filters by 10 to 15% compared to those using 450 nm except for bedrock groundwater. Al in surface water showed a distinct linear decrease with the decrease of filter pore sizes. These results showed that 100 nm pore size had little effect to remove colloidal particles in alluvial groundwater and surface water in our study. In contrast, significant concentration decreases in 15 nm pore size filtrates indicate that the presence of 15 to 100 nm colloidal particles may affect determination of dissolved concentrations of elements in natural water.

Ni-MH 2차전지용 AB2계 Zr-Mn-Ni 수소저장합금의 개발 (Development of AB2-Type Zr-Mn-Ni Hydrogen-Storage Alloys for Ni-MH Secondary Battery)

  • 권익현;안동수;박혜령;송명엽
    • 한국수소및신에너지학회논문집
    • /
    • 제12권1호
    • /
    • pp.29-38
    • /
    • 2001
  • Zr-Mn-Ni 3성분계 합금으로서 $ZrMn_2Ni_x$ (x=0.0, 0.3, 0.6, 0.9 and 1.2) 합금을 제작하여 이들의 수소저장특성과 전기화학적 특성을 조사한 결과 $ZrMn_2Ni_x$ 모든 조성에서 C14 Laves phase가 형성되었다. 여러 합금 중에서 $ZrMn_2Ni_{0.6}$ 합금이 비교적 활성화가 빨리 이루어졌고(약 11회 싸이클 후), 방전용량이 가장 컸다(최대 45mAh/g). 모든 합금에서 6M KOH 전해질에 Zr이 가장 잘 용해되었다. $ZrMn_2Ni_{0.6}$ 합금은 다른 합금들에 비해 Mn과 Ni이 더 많이 용해되었다. $ZrMn_2Ni_{0.6}$ 합금이 비교적 활성화가 빨리 이루어지고 방전용량이 컸는데, 이에 따른 활발한 충 방전으로 인하여 Zr, Mn, Ni이 많이 용해되어 나온 것으로 사려된다.

  • PDF

강변여과수 개발부지 지하수의 수리지화학적 특성 -Preliminary results

  • 현승규;우남칠;신우식;함세영
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 추계학술발표회
    • /
    • pp.579-582
    • /
    • 2003
  • This study is a part of the project to identify water-quality degradation mechanism due to Fe and Mn in the river-bank infiltration system in the Changwon city, Kyungsangnam-Do. Results of hydrogeochemical logging indicated that the matrix of the river bank affects groundwater quality, probably related with the hydraulic conductivities of the different layers of bank deposits. Electric conductivity logging data clearly show various layers of groundwater flows. Further studies are necessary to identify mechanisms of increasing dissolved oxygen contents with depths at some monitoring wells.

  • PDF

$4{\pi}{\beta}-{\gamma}$ 동시계수기술에 의한 $^{56}Mn$방사능 절대측정 (Absolute $^{56}Mn$ Activity Measurement by $4{\pi}{\beta}-{\gamma}$ Conincidence Counting Technique)

  • 황선태;최길웅;오필제;이경주;이건재
    • Journal of Radiation Protection and Research
    • /
    • 제12권2호
    • /
    • pp.19-27
    • /
    • 1987
  • 황산망간 용액조장치의 $^{56}Mn\;{\gamma}$선 검출효율을 결정하는데 $^{56}Mn$용액의 방사능을 절대측정하는 것은 필수적이다 $^{56}Mn$시료를 제작하기 위하여 99.99%의 순도를 갖는 Mn금속조각 13.718mg되는 시료를 한국에너지연구소 TRIGA MARK-II 원자로의 중성자선속이 약 $10^{13}n/cm^2{\cdot}s$되는 열중성자장에서 12분간 조사시켰다. 중성자 방사화된 $^{56}Mn$금속시료를 0.1N-HCI 용액 50ml 용해시켜서 $^{56}Mn$시료를 제작하여 $4{\pi}{\beta}-{\gamma}$ 동시계수기술로 방사능을 측정한 결과 불확도 0.366%를 갖는 값으로서 1987년 10월 15일 0 시를 기준하여 408.070kBq/mg을 얻었다.

  • PDF

오존을 이용한 용존성 망간 제거 특성: 공존이온의 영향 및 최적주입량 (Characteristics of manganese removal by ozonation: Effect of existing co-ion and optimum dosage)

  • 곽연우;이슬기;이용수;홍성호
    • 상하수도학회지
    • /
    • 제32권2호
    • /
    • pp.145-152
    • /
    • 2018
  • This study is focused on manganese (Mn(II)) removal by ozonation in surface water. Instant ozone demand for the water was 0.5 mg/L in the study. When 0.5 mg/L of Mn(II) is existed in water, the optimum ozone concentration was 1.25 mg/L with reaction time 10 minutes to meet the drinking water regulation. The ozone concentration to meet the drinking water regulation was much higher than the stoichiometric concentration. The reaction of soluble manganese removal was so fast that the reaction time does not affect the removal dramatically. When Mn(II) is existed with Fe, the removal of Mn(II) was not affected by Fe ion. However As(V) is existed as co-ion the removal of Mn(II) was decreased by 10%. Adding ozone to surface water has limited effect to remove dissolved organic matter. When ozone is used as oxidant to remove Mn(II) in the water, the existing co-ion should be evaluated to determine optimum concentration.

과망간산칼륨을 이용한 용해성 망간 제거: 중탄산염 영향 및 최적조건 (Manganese removal by KMnO4: Effects of bicarbonate and the optimum conditions)

  • 이용수;도시현;권영은;홍성호
    • 상하수도학회지
    • /
    • 제30권2호
    • /
    • pp.207-213
    • /
    • 2016
  • This study is focused on manganese (Mn(II)) removal by potassium permanganate ($KMnO_4$) in surface water. The effects of bicarbonate on Mn(II) indicated that bicarbonate could remove Mn(II), but it was not effectively. When 0.5 mg/L of Mn(II) was dissolved in tap water, the addition of $KMnO_4$ as much as $KMnO_4$ to Mn(II) ratio is 0.67 satisfied the drinking water regulation for Mn (i.e. 0.05 mg/L), and the main mechanism was oxidation. On the other hand, when the same Mn(II) concentration was dissolved in surface water, the addition of $KMnO_4$, which was the molar ratio of $KMnO_4/Mn(II)$ ranged 0.67 to 0.84 was needed for the regulation satisfaction, and the dominant mechanisms were both oxidation and adsorption. Unlike Mn(II) in tap water, the increasing the reaction time increased Mn(II) removal when $KMnO_4$ was overdosed. Finally, the optimum conditions for the removals of 0.5 - 2.0 mg/L Mn(II) in surface water were both $KMnO_4$ to Mn(II) ratio is 0.67 - 0.84 and the reaction time of 15 min. This indicated that the addition of $KMnO_4$ was the one of convenient and effective methods to remove Mn(II).