• 제목/요약/키워드: Dissimilar metals welding

검색결과 79건 처리시간 0.023초

이종재료의 폭발용접특성 해석에 관한 컴퓨터 시뮬레이션 (Computer Simulation on the Explosive Welding Characteristics of Dissimilar Materials)

  • 김청균;김명구;손원호
    • 대한기계학회논문집
    • /
    • 제17권12호
    • /
    • pp.3028-3044
    • /
    • 1993
  • A metallic bond of great strength for the same or dissimilar metals can be produced by the explosive welding. The formation of a metallic jet at the interface between the two impacting plates has been simulated using the numerical hydrocode DYNA2D. The mechanism of explosive welding for the wave formation is also analyzed by the computer simulation technique. The microscopic with the experimentally observed behaviour of the explosive welding. The computer simulations of the explosive welding process have proven especially useful for analyzing the mechanism of metallic bones.

2024 Al합금과 아연도금강판의 점용접에 관한 품질평가 (The Quality Evaluation on Resistance Spot Welding of 2024 Aluminum Alloy and Zinc Coated Steel)

  • 허인호;이철구;채병대
    • Journal of Welding and Joining
    • /
    • 제19권4호
    • /
    • pp.379-383
    • /
    • 2001
  • Resistance spot welding has been widely used in the sheet metal joining processes because of low cost, high productivity and convenience. Recently, automobile and aerospace industries are trying to replace partly steel sheets with aluminum alloy sheets. But in the case of dissimilar materials, to apply resistance spot welding has been known to be very difficult owing to the effect of melting temperature. On this study, an effort was made to apply spot welding of dissimilar sheet metals, 2024 aluminum alloy and zinc coated steel sheet, evaluate the spot weld quality with tensile-shear strength test and nondestructive evaluation technique, C-scan image methodology. In this study results, as the current below 11 kA, melting of materials is not achieved well. Also as the current exceeds to 13.5 kA, the more spatters happen at welded zone and tensile-shear strength lowered. So, the feasibility of C-scan image technique proposed in the study is found to be suitable evaluation method for resistance spot weldability.

  • PDF

Al/Fe 이종금속 접합부의 부식특성 (Corrosion Assessment of Al/Fe Dissimilar Metal Joint)

  • 강민정;김철희;김준기;김동철;김종훈
    • Journal of Welding and Joining
    • /
    • 제32권4호
    • /
    • pp.55-62
    • /
    • 2014
  • The use of light-weight Al alloys in the automotive industry is increasing to meet requirements for fuel efficiency and emission reduction. Joining Al alloy to the conventional steel sheet is also very important issue with the increased use of Al alloy, and several joining processes have been introduced to enhance joining strength between dissimilar metals. This paper deals with a galvanic corrosion in the dissimilar metal joining. Salt spray tests up to 2000 hours were conducted on a self-piercing rivet, spot welded, adhesive bonded and weld-bonded joints, and cross-sections and tensile shear strength according the salt spray duration were analyzed at every 500-hour. Self-piercing rivet joint had relative low initial strength but the joint strength did not change regardless of the salt spray duration. The strength of other joints (spot welded, adhesive bonded and weld-bonded joints) decreased with the increase of salt spray duration and the corrosion behaviour of each joint was discussed.

전자빔 용접된 Cu / STS 304강의 미세조직에 관한 연구 (Microstructure of Electron Beam Welded Cu / STS 304 Dissimilar Materials)

  • 박경태;김인호;백준호;천병선
    • Journal of Welding and Joining
    • /
    • 제28권2호
    • /
    • pp.47-53
    • /
    • 2010
  • According to the research report for the recent a few years, the dissimilar welding of Cu and STS 304 alloy have been presented that a weldability is very poor. This article present a study on Lap joint by Electron beam welding dissimilar materials. The weld metals was constituted between pure copper and STS 304 steel. The experiment was performed with 125mA welding current, 520mA focusing current. The Vacuum condition of chamber is 5${\times}$10-5torr and welding speed is 300mm/min. Showing the bead shape of weld metal, the thickness of the stainless 304 using as the protect materials is 3mm and the thickness of a copper is 15mm. The analysis about the microstructure were carried out in which it was observed with SEM. The results showed that complex heterogeneous fusion zone microstructure characterized both by rapid cooling and mixing of the molten metal, however the liquation crack was formated in the fusion line.

자동차용 아연 도금 강판과 알루미늄 합금의 접합 (Joining of Zinc Coated Steel and Aluminum Alloy for Car Body)

  • 이우람;이정현
    • 한국생산제조학회지
    • /
    • 제20권2호
    • /
    • pp.145-150
    • /
    • 2011
  • There is problem to reduce the car body weight for improving fuel consumption and $CO_2$ generation. As one of the solution, the multi material car body concept using aluminum alloys and high strength steels is proposed recently. Therefore, new welding processes by which these dissimilar material can be joined in high reliability and productivity are demanded. Laser spot welding was developed for joining of dissimilar metals. In the present work, Laser spot welding of zinc coated steel and aluminum alloy was investigated, and the process parameters were studied. Otherwise, the influences of process parameters on the weldability, the formation of intermetallic compound layer and the mechanical properties have been investigated. When intermetallic compound layer thickness was more than 1mm, specimen was failure in the interface.

Flash Butt 용접부의 파괴거동에 관한 실험적 연구(I) (An Experimental Study on the Fracture Behavior for Flash Butt Welding Zone)

  • 김용수;신근하;강동명
    • 한국안전학회지
    • /
    • 제7권1호
    • /
    • pp.65-72
    • /
    • 1992
  • Objective of this research is to evaluate fracture behaviors of fresh-butt welded metal by the acoustic emission technique. The specimens used are medium carbon steel(SM45C), mild steel (SS41) and stainless steel(SUS304), which have different weldability. The similar welding and dissimilar welding processes are considered, in the former SM45C, SS41 and SUS304 are used, in the later the following metals are used SM45C and SS41, SM45C and SUS304 and SS41 and SUS304. The characteristics of fracture in weld metal are eshmated by the tension test with nominal speciemns, the fracture toughness test with compact tension specimens and fractography analysis. The results of tension test show for base metals and similar welding materials that the yield strength and ultimate strength of similar welding materials are increased, the elongation of those are decreased. The weldability of SUS304 is better than that of SM45C and SS41 In similar welding materials. Mechanical properties of dissimilar welding mateiiths we lower than those of similar welding materials. In dissimilar welding materials, the weldability of SM45C and SUS304 is better than that of SM45C and SS41, and also weidability of SS41 and SUS304 is better than SS41 and SM45C. Comparing mechanical properties with AE counts, it is found that AE conuts appeared on a small before the limit load of elasticity(P$_{e}$), and apper greatly near yield strength region in tension test. These results could contribute to the safety analyses and the evaluation of strength for welding structure.e.

  • PDF

CW Nd:YAG 레이저를 이용한 중탄소강과 오스테나이트계 스테인레스강의 이종금속 용접 (Dissimilar Metal Welding of Medium Carbon Steel and Austenitic Stainless Steel utilize CW Nd:YAG Laser)

  • 신호준;안동규;임기건;신병헌;유영태
    • 한국정밀공학회지
    • /
    • 제23권3호
    • /
    • pp.47-55
    • /
    • 2006
  • Laser welding of dissimilar metals has been widely used to improve a wear resistance and a corrosion resistance of the industrial parts. The objective of this research is to investigate the influence of the process parameters, such as the welding for SM45C and STS304 with CW Nd:YAG lasers. The bead-on-plate welding tests are carried out for several combinations of the experimental conditions. In order to quantitatively examine the characteristics of the dissimilar welding, the welding quality of the cut section, stress-strain behavior and the hardness of the welded metal are investigated. From the results of the investigation, it has been shown that the optimal voiding condition without defects in the vicinity of the welded area and with a good welding quality is 1600W of the laser power, 0.85m/min of welding speed and $4{\ell}/min$ of pressure for shielding gas.

중탄소강과 스테인리스강의 Nd:YAG 레이저 이종용접에서 용접특성 (Dissimilar Metal Welding Characteristics for Medium Carbon Steel and Stainless Steel Using a Nd:YAG Laser)

  • 유영태;이현중;김진우
    • 한국생산제조학회지
    • /
    • 제25권1호
    • /
    • pp.68-74
    • /
    • 2016
  • The Nd:YAG laser welding process is one of the most advanced manufacturing technologies owing to its high speed and penetration, and has increased the automation and flexibility of an entire industry. Laser welding of dissimilar metals has been widely used to improve the wear resistance and corrosion resistance of industrial parts. The objective of this research is to investigate the influence of process parameters on the welding of SM45C and STS304 with CW Nd:YAG lasers. Bead-on-plate welding tests were carried out for several combinations of the experimental conditions. In order to quantitatively examine the characteristics of the dissimilar welding, the welding quality of the cut section, strain-stress behavior, and hardness of the welded part were investigated.

PREDICTION OF RESIDUAL STRESS FOR DISSIMILAR METALS WELDING AT NUCLEAR POWER PLANTS USING FUZZY NEURAL NETWORK MODELS

  • Na, Man-Gyun;Kim, Jin-Weon;Lim, Dong-Hyuk
    • Nuclear Engineering and Technology
    • /
    • 제39권4호
    • /
    • pp.337-348
    • /
    • 2007
  • A fuzzy neural network model is presented to predict residual stress for dissimilar metal welding under various welding conditions. The fuzzy neural network model, which consists of a fuzzy inference system and a neuronal training system, is optimized by a hybrid learning method that combines a genetic algorithm to optimize the membership function parameters and a least squares method to solve the consequent parameters. The data of finite element analysis are divided into four data groups, which are split according to two end-section constraints and two prediction paths. Four fuzzy neural network models were therefore applied to the numerical data obtained from the finite element analysis for the two end-section constraints and the two prediction paths. The fuzzy neural network models were trained with the aid of a data set prepared for training (training data), optimized by means of an optimization data set and verified by means of a test data set that was different (independent) from the training data and the optimization data. The accuracy of fuzzy neural network models is known to be sufficiently accurate for use in an integrity evaluation by predicting the residual stress of dissimilar metal welding zones.