• Title/Summary/Keyword: Dissimilar metals

Search Result 110, Processing Time 0.019 seconds

The Pollution Characteristics of Heavy Metals from Surface Sediment in Nakdong River (낙동강 하상퇴적물의 중금속 오염특성)

  • 김은호;김형석;김석택
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.4
    • /
    • pp.52-58
    • /
    • 2000
  • This study was carried out to investigate the contents of heavy metals with respect to the depth, particle size and Tessier et al. method in surface sediment of the Nakdong river. The contents of Cd, Cu & Pb were high or similar with increasing depth, but Mn & Zn were high to middle depth. Generally, the contents of heavy metals were found to be high as the particle size become more small and more deep. Because the more particle size was small, the specific surface area was large, the contents of heavy metals was high for increasing affinity. It was estimated that the types of heavy metals contained in surface sediment by Tessier et al. method was dissimilar with anaerobic condition, pH and degradation of organic matter, etc.

  • PDF

Corrosion Assessment of Al/Fe Dissimilar Metal Joint (Al/Fe 이종금속 접합부의 부식특성)

  • Kang, Minjung;Kim, Cheolhee;Kim, Junki;Kim, Dongcheol;Kim, Jonghoon
    • Journal of Welding and Joining
    • /
    • v.32 no.4
    • /
    • pp.55-62
    • /
    • 2014
  • The use of light-weight Al alloys in the automotive industry is increasing to meet requirements for fuel efficiency and emission reduction. Joining Al alloy to the conventional steel sheet is also very important issue with the increased use of Al alloy, and several joining processes have been introduced to enhance joining strength between dissimilar metals. This paper deals with a galvanic corrosion in the dissimilar metal joining. Salt spray tests up to 2000 hours were conducted on a self-piercing rivet, spot welded, adhesive bonded and weld-bonded joints, and cross-sections and tensile shear strength according the salt spray duration were analyzed at every 500-hour. Self-piercing rivet joint had relative low initial strength but the joint strength did not change regardless of the salt spray duration. The strength of other joints (spot welded, adhesive bonded and weld-bonded joints) decreased with the increase of salt spray duration and the corrosion behaviour of each joint was discussed.

Effect of Circumferential Tool Path Control on Friction Stir Spot Welding of Al/Fe Dissimilar Metal Joint (툴 경로제어를 이용한 Al/Fe 이종금속 마찰교반점용접 공정특성 평가)

  • Yoon, Jin Young;Kim, Cheolhee;Rhee, Sehun
    • Journal of Welding and Joining
    • /
    • v.34 no.3
    • /
    • pp.6-11
    • /
    • 2016
  • Joining Al/Fe dissimilar metals is becoming a subject of special interest in the assembly of automotive parts as a trade-off between the weight lightening and the cost reduction. Although various studies have been introduced to join Al alloy with the steel sheet by fusion welding, weak joint strength and galvanic corrosion still remained as problems to be solved. As a solid state welding, friction stir welding has been preferred to fusion welding processes in the dissimilar metal joints. This study investigated friction stir spot welding (FSSW) of Al alloy to the thin steel sheet with a thickness of 0.65 mm. The conventional FSSW is a stationary spot welding process but new approach adopted an additional circumferential movement in company with high speed tool rotation. A full factorial experimental design was implemented, and the main and interaction effects of parameters were analysed on the failure load in the tensile shear test. The direction and radius of rotation were statistically significant parameters and these two parameters affected the joint width and the shape of the hook.

Microstructure of Electron Beam Welded Cu / STS 304 Dissimilar Materials (전자빔 용접된 Cu / STS 304강의 미세조직에 관한 연구)

  • Park, Kyoung-Tae;Kim, In-Ho;Baek, Jun-Ho;Chun, Byung-Sun
    • Journal of Welding and Joining
    • /
    • v.28 no.2
    • /
    • pp.47-53
    • /
    • 2010
  • According to the research report for the recent a few years, the dissimilar welding of Cu and STS 304 alloy have been presented that a weldability is very poor. This article present a study on Lap joint by Electron beam welding dissimilar materials. The weld metals was constituted between pure copper and STS 304 steel. The experiment was performed with 125mA welding current, 520mA focusing current. The Vacuum condition of chamber is 5${\times}$10-5torr and welding speed is 300mm/min. Showing the bead shape of weld metal, the thickness of the stainless 304 using as the protect materials is 3mm and the thickness of a copper is 15mm. The analysis about the microstructure were carried out in which it was observed with SEM. The results showed that complex heterogeneous fusion zone microstructure characterized both by rapid cooling and mixing of the molten metal, however the liquation crack was formated in the fusion line.

Weldability of SUS304 and Ti Dissimilar Welds with Various Welding Speed using Single Mode Fiber Laser (싱글모드 파이버 레이저를 이용한 SUS304와 Ti 이종재료의 용접속도에 따른 용접특성)

  • Lee, Su-Jin;Katayama, Seiji;Kim, Jong-Do
    • Journal of Welding and Joining
    • /
    • v.31 no.5
    • /
    • pp.64-70
    • /
    • 2013
  • The joining of Ti and SUS304 dissimilar metals is one of the effective measures to save rare metal. But Ti and SUS304 have differences in materials properties, and Ti and Fe intermetallic compounds such as TiFe and $TiFe_2$ are easily formed in weld fusion zone between Ti and SUS304. Nevertheless, in this study, full penetration lap dissimilar welding of Ti and SUS304 using single-mode fiber laser with ultra-high welding speed was tried, and it was found out that ultra-high welding speed could control the generation of intermetallic compound. To recognize the formation of intermetallic phase in the weld fusion zone and the compound zone of interface weld area were observed and analyzed using energy dispersive X-ray spectroscopy (EDX). And it was confirmed that the ultra-high welding speed could reduce amount of intermetallic compounds, but the intermetallic compounds were existed in the weld fusion zone under the all conditions.

PREDICTION OF RESIDUAL STRESS FOR DISSIMILAR METALS WELDING AT NUCLEAR POWER PLANTS USING FUZZY NEURAL NETWORK MODELS

  • Na, Man-Gyun;Kim, Jin-Weon;Lim, Dong-Hyuk
    • Nuclear Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.337-348
    • /
    • 2007
  • A fuzzy neural network model is presented to predict residual stress for dissimilar metal welding under various welding conditions. The fuzzy neural network model, which consists of a fuzzy inference system and a neuronal training system, is optimized by a hybrid learning method that combines a genetic algorithm to optimize the membership function parameters and a least squares method to solve the consequent parameters. The data of finite element analysis are divided into four data groups, which are split according to two end-section constraints and two prediction paths. Four fuzzy neural network models were therefore applied to the numerical data obtained from the finite element analysis for the two end-section constraints and the two prediction paths. The fuzzy neural network models were trained with the aid of a data set prepared for training (training data), optimized by means of an optimization data set and verified by means of a test data set that was different (independent) from the training data and the optimization data. The accuracy of fuzzy neural network models is known to be sufficiently accurate for use in an integrity evaluation by predicting the residual stress of dissimilar metal welding zones.

Assessment of Resistance Spot Weldability of Dissimilar Joints of Austenitic Stainless Steels/IF Steels and Ferritic Stainless Steels/IF Steels (페라이트계 및 오스테나이트계 스테인리스강과 IF강의 이종 접합부의 저항 점 용접성 평가)

  • Lee, Jin-Beom;Kim, Dong-Cheol;Nam, Dae-Geun;Kang, Nam Hyun;Kim, Soon-Kook;Yu, Ji-Hun;Rhym, YoungMok;Park, Yeong-Do
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.1
    • /
    • pp.64-72
    • /
    • 2011
  • The spot weldability of dissimilar metal joints between austenitic stainless steels (STS316)/IF steels and ferritic stainless steels (STS430)/IF steels was investigated. This study was aimed to determine the spot welding parameters for a dissimilar metal joint and to evaluate the dissimilar metal joint's weldability, including its welding nugget shape, tensile-shear strength, hardness, and microstructure. The comparison of these results was described in terms of fracture behavior. Compared with the weld lobe of similar metal joints, dissimilar metal joints (STS430/IF) had reduced weld current range. However, the weld lobe of STS316/IF steel joint showed increased weld current range. This is because the dilution of chemical composition in the molten weld pool suppressed the heat input being caused by Joule heat with current flow through the samples. The microstructure of the fusion zone was fully martensite and mixture of ferrite and martensite for austenitic stainless steel/IF steel and ferritic stainless steel/IF steel combination, respectively. The experimental results showed that the shape of nugget was asymmetric, in which the fusion zone of the austenitic and ferritic stainless steel sheet was larger due to the higher bulk-resistance. The predicted microstructure by using the Schaeffler diagram was well matched with experimental results. After peel test, the fracture was initiated from heat affected zone of ferritic stainless steel sheet side, however the final fracture was propagated into the IF steel sheet side due to its lower strength.

A Study on Characteristics of Dissimilar Welds between Super Duplex Stainless Steel UNS S32750 and Carbon Steel A516-70 with FCAW (슈퍼듀플렉스 스테인리스강 UNS S32750과 탄소강 A516-70의 이종금속 FCA 용접 특성에 대한 연구)

  • Moon, In-June;Jang, Bok-Su;Kim, Se-Cheol;Koh, Jin-Hyun
    • Journal of Welding and Joining
    • /
    • v.32 no.4
    • /
    • pp.26-33
    • /
    • 2014
  • The metallurgical and mechanical characteristics, toughness and corrosion resistance of dissimilar welds between super duplex stainless steel UNS S32750 and carbon steel ASTM A516Gr.70 have been evaluated. Three heat inputs of 21.12, 24.00, 26.88kJ/cm were employed to make joints of dissimilar metals with flux cored arc welding(FCAW). Based on microstructural examination, vermicular ferrite was formed in the first layer of weld at low heat input(21.12kJ/cm) and $Cr_{eq}/Ni_{eq}$ of 1.61 while acicular ferrite was formed in last layer of weld at high heat input(26.88kJ/cm) and $Cr_{eq}/Ni_{eq}$ of 1.72. Ferrite percentage in dissimilar welds was lowest in the first layer of weld regardless of heat inputs and it gradually increased in the second and third layers of weld. Heat affected zone showed higher hardness than the weld metal although reheated zone showed lower hardness than weld metal due to the formation of secondary austenite. Tensile strengths of dissimilar welds increased with heat input and there was 100MPa difference. The corrosion test by ferric chloride solution showed that carbon steel had poor corrosion resistance and pitting corrosion occurred in the first layer(root pass) of weld due to the presence of reheated zone where secondary austenite was formed. The salt spray test of carbon steel showed that the surface only corroded but the amount of weight loss was extremely low.

Analysis of Forming Limit for Circular Bonded Sheet Metals by Shear Band Formation (전단띠 형성에 의한 원형접합판의 변형한계 해석)

  • 정태훈
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.1
    • /
    • pp.127-132
    • /
    • 2001
  • By the use of a similar numerical method as the forming limit strain by coating method of coated sheet metals is investigated, in which the FEM is applied and J2G(J2-Gotohs Corner Theory) is utilized as the plasticity constitutive equa-tion. Circular bonded sheet metals with dissimilar sheets on both surface planes are stretched in a plane -strain state, with various work-hardening exponent n-values and thicknesses of each layer. Processes of shear-band formation in such com-posite sheets are clearly illustrated. It is concluded that, it the bonded state, the higher limiting strain of one layer is reduced due to the lower limiting strain of the other layer and vice versa, and does not necessarily obey the rule of linear combination of the limiting strain of each layer weighed according thickness.

  • PDF

Ultrasonic Deposit Junction Characteristic Evaluation of Metal Sheets Al/Al and Al/Cu (금속 박판 Al/Al 및 Al/Cu의 초음파 용착 접합성 평가)

  • Seo, Jeong-Seok;Beck, Si Young
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.8
    • /
    • pp.642-648
    • /
    • 2011
  • This paper describes an experimental study on ultrasonic welding of similar and dissimilar metals. There are optimum welding conditions which are found for welding of Al/Al and Al/Cu. It evaluated weldability using tensile test, SEM observation and EDX-ray analysis. Both ultrasonic welding of Al/Al and Al/Cu have amplitude as the variable factor. Al/Cu welding was examined again with welding time as variable factor to find the best conditions. The more welding time or amplitude increase, the better weldability. The optimum conditions for ultrasonic welding of Al/Al were formed at pressure 0.25 MPa, welding time 0.25 sec, amplitude 90%. Pressure 0.25 MPa, welding time 0.4 sec, amplitude 80% are optimized for Al/Cu ultrasonic metal welding and solid-state diffusion generated by ultrasonic vibration and frictional heat is confirmed at the welded interface.