• Title/Summary/Keyword: Dissimilar Joint

Search Result 147, Processing Time 0.018 seconds

A study on the ultrasonic weldability of the dissimilar plastics (이종 플래스틱의 초음파 용접성에 대한 연구)

  • 이철구
    • Journal of Welding and Joining
    • /
    • v.9 no.1
    • /
    • pp.48-57
    • /
    • 1991
  • Welding of dissimilar materials is an area of growing importance in the automotive, aerospace, electronics medical and other domestic appliance industries. This study investigated the ultrasonic welding of dissimilar polymers. Two amorphous and two semicrystalline polymers were used, utilizing all possible welding combinations. For each combination of dissimilar materials, the weldabilitys of the joint was evaluated as a function of weld time, amplitude of vibration and pressure. The joint was also examined microscopically to analyze the melting and flow of the materials. It was generally around found that welding of amorphus polymers resulted in very poor joints. Welding of the amorphous polymers together and welding of the semicrystalline polymers together produced good joints.

  • PDF

Characteristics of Dissimilar CO2 Laser Welding for High Mn Steel and Low Carbon Steel (고Mn강과 저탄소강의 CO2 레이저 이종용접 특성)

  • Jeong, Bo-Young;Han, Tae-Kyo
    • Journal of Welding and Joining
    • /
    • v.28 no.3
    • /
    • pp.36-41
    • /
    • 2010
  • High Mn steel has been developed for automotive applications since the steel has an excellent combination of strength and ductility. However, from the viewpoint of welding, high Mn steel has a few problems related to its chemical composition. This paper describes characteristics of dissimilar $CO_2$ laser welding for expanding application of high Mn steel. From this work it was cleared that dissimilar laser welded joint between high Mn steel and carbon steel had poor formability due to the formation of martensite within weld metal. In order to improve ductility of welded joint, the method of controlling the dilution ratio of high Mn steel was suggested.

Solid State Joining Processes for Dissimilar Joints of Mg/Al Alloys (고상접합을 이용한 Al/Mg 합금의 이종 용접)

  • Kim, Heung-Ju;Kim, Wook-Seong;Chun, Chang-Keun;Chang, Woong-Seong
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.41-41
    • /
    • 2009
  • To evaluate the applicability of dissimilar joining between Mg and Al alloys in automobile manufacturing process, solid state joining processes such as magnetic pulse welding(MPW), friction stir welding(FSW) and friction spot joining(FSJ) were attempted successfully. MPW process has been concentrated mainly on round section tube to tube and tube to bar welds. AZ31 Mg alloy has been successfully welded to pure Al A1070 as well as to Al alloy A3003. While, for friction stir welding of dissimilar sheet joints, AZ31B/A6061 with the thickness of 2mm were used and a square butt joint with a good quality was obtained at the conditions of 0.8mm/sec of travel speed and tool rotation speed of 850rpm. The maximum tensile strength of 179 MPa, which was about 80 % of the Mg base metal tensile strength, has been obtained. Finally, friction spot joining was attempted to make a dissimilar lap joint between AZ31(0.8mm) and A6061(1mm), while the joint exhibited the same level of tensile shear strength as that of similar Mg joint.

  • PDF

Effect of Circumferential Tool Path Control on Friction Stir Spot Welding of Al/Fe Dissimilar Metal Joint (툴 경로제어를 이용한 Al/Fe 이종금속 마찰교반점용접 공정특성 평가)

  • Yoon, Jin Young;Kim, Cheolhee;Rhee, Sehun
    • Journal of Welding and Joining
    • /
    • v.34 no.3
    • /
    • pp.6-11
    • /
    • 2016
  • Joining Al/Fe dissimilar metals is becoming a subject of special interest in the assembly of automotive parts as a trade-off between the weight lightening and the cost reduction. Although various studies have been introduced to join Al alloy with the steel sheet by fusion welding, weak joint strength and galvanic corrosion still remained as problems to be solved. As a solid state welding, friction stir welding has been preferred to fusion welding processes in the dissimilar metal joints. This study investigated friction stir spot welding (FSSW) of Al alloy to the thin steel sheet with a thickness of 0.65 mm. The conventional FSSW is a stationary spot welding process but new approach adopted an additional circumferential movement in company with high speed tool rotation. A full factorial experimental design was implemented, and the main and interaction effects of parameters were analysed on the failure load in the tensile shear test. The direction and radius of rotation were statistically significant parameters and these two parameters affected the joint width and the shape of the hook.

Analysis of Residual Stress on Dissimilar Butt Joint by TIG Assisted Hybrid Friction Stir Welding (TIG-FSW 하이브리드 용접을 이용한 이종재 맞대기 용접부의 잔류응력 해석)

  • Bang, Hee-Seon;Ro, Chan-Seoung;Bijoy, M.S.;Bang, Han-Sur;Lee, Yoon-Ki
    • Journal of Welding and Joining
    • /
    • v.30 no.2
    • /
    • pp.47-53
    • /
    • 2012
  • This paper aimed to study and understand the mechanical phenomena of thermal elasto-plastic behavior on the dissimilar butt joint (Al 6061-T6 and STS304) by TIG assisted Friction Stir Welding. Heat conduction and residual stress analysis is carried out using in-house solver. Two-dimensional results of the heat distribution and residual stresses in dissimilar joint for particular tool geometry and material properties are presented. The predicted stress along longitudinal direction in Al 6061-T6 and STS304 are approximately between 12-15% of their respective yield strengths. A comparison is made between experimentally measured and numerically predicted equivalent residual stress values.

Temperature Behavior in Dissimilar Butt Joint During TIG Assisted Friction Stir Welding (TIG-FSW 하이브리드 용접을 이용한 이종재 맞대기 용접부의 온도 분포 특성)

  • Bang, Hee-Seon;Bijoy, M.S.
    • Journal of Welding and Joining
    • /
    • v.29 no.5
    • /
    • pp.63-71
    • /
    • 2011
  • Three-dimensional finite element analysis is performed to study the temperature distribution phenomenon of TIG assisted friction stir welding (TAFSW) between dissimilar plates (Al 6061-T6 and stainless steel 304). TAFSW is a solid-state welding process that integrates TIG (Tungsten Inert Gas) into a friction stir welding (FSW), to preheat the harder material ahead of FSW tool during welding. In order to facilitate the industrial application of welding, 3D numerical modeling of heat transfer has been carried out applying Finite Element Method (FEM). The temperature distribution due to heat generation during TAFSW on dissimilar materials joint is analysed using in-house solver. Moving heat source along with frictional heat between the work specimens and tool surface is considered to calculate the heat input. The analytical model used predicts successfully the maximum welding temperatures that occur on the dissimilar materials during TAFSW. Comparison with the infra red camera and thermocouple measurement results shows that the results from the current numerical simulation have good agreement with the measured data.

Electromagnetic Joining of Dissimilar Materials (이종재료의 전자기 결합)

  • 박영배;김헌영;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.33-38
    • /
    • 2002
  • Nowdays, related with vehicle weight reduction, many automotive maker are trying to develop spaceframe. If aluminum member and steel member are applied together in constructing spaceframe, there will be many advantages in aspect of inclosing strength and saving weight of automotive. In this case, joining method of aluminum and steel members has to be proposed. For this method, electomagnetic joining has many advantages compared to welding. In this paper, joining of aluminum tube and steel tube using eletomagnetic pressure was studied and strength of joint was evaluated through commission test.

  • PDF

Prediction Fracture Strength on Adhesively Bonded scarf Joints in Dissimilar Materials (이종재료의 경사접착이음에 대한 파괴강도의 예측)

  • 정남용
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.4 no.4
    • /
    • pp.50-60
    • /
    • 1995
  • Recently advantages joining dissimiliar materials and light weight material techniques have led to increasing use of structural adhesives in the various industries. Stress singulartiy occurs at the interface edges of adhesively bonded dissimilar materials. So it is required to analyze its stress singularity at the interface edges of adhesively bonded joints indissimilar materials. In this paper, the analysis method of stress singularity is studied in detail. Also, effects of the stress singularity at the interface edge of adhesively bonded scarf joints in combinations of dissimilar materials are investigated by using 2-dimensional elastic program of boundary element method. As the results, the strength evaluation method of adhesively bonded dissimilar materials using the stress singularity factor, $\Gamma$,is very useful. The fracture criterion, method of strength evaluation and prediction of fracture strength by the stress singularity factor on the adhesively bonded dissimilar materials are proposed.

  • PDF

Characteristics of dissimilar laser welding of high Mn steel (고Mn강의 이종 레이저용접 특성)

  • Jeong, Bo-Yeong;Han, Tae-Gyo;Lee, Jong-Bong
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.190-192
    • /
    • 2007
  • High Mn steel has been developed for automotive applications since the steel has an excellent combination of strength and ductility. However, from the viewpoint of welding, high Mn steel has a few problems related to its chemical composition. In this study, development of dissimilar laser welding technology has been investigated for expanding application of high Mn steel. The results have shown that dissimilar weld joint between high Mn steel and carbon steel has poor erichsen property using STS309L filler wire or not.

  • PDF

Stress Analysis of Brazed Interface in Dissimilar Materials by BEM (이종접합재 접합계면의 응력해석)

  • 오환섭;김시현;김성재;양인수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.171-176
    • /
    • 2003
  • In this study, stress analysis using Boundary Element Method (BEM) was carried to investigate stress distribution in the brazing joint between a Hardmetal and a HSS. The two models were proposed to analyze the stress singularity in the interfaces of the brazing joint. The material type, thickness of the filler metal and the length of the vertical brazing adhesive are considered in the BEM analysis. As results, the peak point of the stress is founded to be in the lower interface of the brazed joint. It should be noted that the maximum stress of the peak point is being affected by the thickness and length of the brazing joint.