• Title/Summary/Keyword: Disposal system

Search Result 818, Processing Time 0.03 seconds

Recent Advances in the Removal of Radioactive Wastes Containing 58Co and 90Sr from Aqueous Solutions Using Adsorption Technology

  • Alagumalai, Krishnapandi;Ha, Jeong Hyub;Choi, Suk Soon
    • Applied Chemistry for Engineering
    • /
    • v.33 no.4
    • /
    • pp.352-366
    • /
    • 2022
  • Nuclear power plant operations for electricity generation, rare-earth mining, nuclear medical research, and nuclear weapons reprocessing considerably increase radioactive waste, necessitating massive efforts to eradicate radioactive waste from aquatic environments. Cobalt (58Co) and strontium (90Sr) radioactive elements have been extensively employed in energy generation, nuclear weapon testing, and the manufacture of healthcare products. The erroneous discharge of these elements as pollutants into the aquatic system, radiation emissions, and long-term disposal is extremely detrimental to humans and aquatic biota. Numerous methods for treating radioactive waste-contaminated water have emerged, among which the adsorption process has been promoted for its efficacy in eliminating radioactive waste from aquatic habitats. The current review discusses the adsorptive removal of radioactive waste from aqueous solutions using low-cost adsorbents, such as graphene oxide, metal-organic frameworks, and inorganic metal oxides, as well as their composites. The chemical modification of adsorbents to increase their removal efficiency is also discussed. Finally, the current state of 58Co and 90Sr removal performances is summarized and the efficiencies of various adsorbents are compared.

An analytical solution for compaction grouting problem considering exothermic temperature effect of slurry

  • Chao Li;Yingke Liu;Man Yuan;Tengrui Yang
    • Geomechanics and Engineering
    • /
    • v.35 no.6
    • /
    • pp.593-601
    • /
    • 2023
  • In this paper, an analytical solution of large-strain cylindrical cavity expansion in compaction grouting problem under temperature field is given. Considering the stress increment caused by temperature, the analytical solution of cavity expansion under traditional isothermal conditions is improved by substituting the temperature stress increment into the cavity expansion analysis. Subsequently, combined with the first law of thermodynamics, the energy theory is also introduced into the cylindrical cavity expansion analysis, and the energy dissipation solution of cylindrical cavity expansion is derived. Finally, the validity and reliability of solution are proved by comparing the results of expansion pressure with those in published literatures. The results show that the dimensionless expansion pressure increases with the increase of temperature, and the thermal response increases with the increase of dilation angle. The higher the exothermic temperature of grouting slurry, the greater the plastic deformation energy of the surrounding soil, that is, the greater the influence on the surrounding soil deformation and the surrounding environment. The proposed solution not only enrich the theoretical system of cavity expansion, but also can be used as a theoretical tool for energy geotechnical engineering problems, such as CPT, nuclear waste disposal, energy pile and chemical grouting, etc.

Acoustic emission characteristics under the influence of different stages of damage in granite specimens

  • Jong-Won Lee;Tae-Min Oh;Hyunwoo Kim;Min-Jun Kim;Ki-Il Song
    • Geomechanics and Engineering
    • /
    • v.37 no.2
    • /
    • pp.149-166
    • /
    • 2024
  • The acoustic emission (AE) technique is utilized to estimate the rock failure status in underground spaces. Understanding the AE characteristics under loading conditions is essential to ensure the reliability of AE monitoring. The AE characteristics depend on the material properties (p-wave velocity, density, UCS, and Young's modulus) and damage stages (stress ratio) of the target rock mass. In this study, two groups of granite specimens (based on the p-wave velocity regime) were prepared to explore the effect of material properties on AE characteristics. Uniaxial compressive loading tests with an AE measurement system were performed to investigate the effect of the rock properties using AE indices (count index, energy index, and amplitude index). The test results were analyzed according to three damage stages classified by the stress ratio of the specimens. Count index was determined to be the most suitable AE index for evaluating rock mass stability.

Nuclear waste attributes of near-term deployable small modular reactors

  • Taek K. Kim;L. Boing;B. Dixon
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1100-1107
    • /
    • 2024
  • The nuclear waste attributes of near-term deployable SMRs were assessed using established nuclear waste metrics, which are the DU mass, SNF mass, volume, activity, decay heat, radiotoxicity, and decommissioning LLW volumes. Metrics normalized per unit electricity generation were compared to a reference large PWR. Three SMRs, VOYGR, Natrium, and Xe-100, were selected because they represent a range of reactor and fuel technologies and are active designs deployable by the decade's end. The SMR nuclear waste attributes show both some similarities to the PWR and some significant differences caused by reactor-specific design features. The DU mass is equivalent to or slightly higher than the PWR. Back-end waste attributes for SNF disposition vary, but the differences have a limited impact on long-term repository isolation. SMR designs can vary significantly in SNF volume (and thus heat generation density). However, these differences are amenable to design optimization for handling, storage, transportation, and disposal technologies. Nuclear waste attributes from decommissioning vary depending on design and decommissioning technology choices. Given the analysis results in this study and assuming appropriate waste management system and operational optimization, there appear to be no major challenges to managing SMR nuclear wastes compared to the reference PWR.

Application of Side Scan Sonar to Disposed Material Analysis at the Bottom of Coastal Water and River

  • Lee, Joong-Woo;An, Do-Gyoung
    • Journal of Navigation and Port Research
    • /
    • v.27 no.3
    • /
    • pp.259-266
    • /
    • 2003
  • Due to the growth of population and industrial development at the coastal cities, there has been much increase in necessity to effective control of the wastes into the coastal water and river. The amount of disposal at those waters has been increased rapidly ana it is necessary for us to track of it in order to keep the waterway safe and the water clean. The investigation and research in terms of water quality in these regions have been conducted frequently but the systematic survey of the disposed wastes at the bottom was neglected and/or minor. In this study we surveyed the status of disposed waste distribution at the bottom of coastal water and river from the scanned images. The intensity of sound received by the side scan sonar tow fish from the sea floor provides information as to the general distribution and characteristics of the superficial wastes. The port and starboard side scanned images produced from two arrays of transducers borne on a tow fish connected by tow cable to a tug boat have the area with width of 22m~112m and band of 44m~224m. All data are displayed in real-time on a high-resolution color display ($1280{\times}1024$ pixels) together with position information by DGPS. From the field measurement and analysis of the recorded images, we could draw the location and distribution of bottom disposals. Furthermore, we could make a database system which might be useful for navigation and fundamental for planning the waste reception and process control system.

Analysis of Active Pharmaceutical Ingredients and Drug Cost of Prescription Medications Returned to Community Pharmacies through 'Drug-Take Back' Program ('폐의약품 수거사업'을 통해 지역약국으로 회수된 처방전의약품의 성분 및 약가 분석)

  • Chun, Pusoon
    • YAKHAK HOEJI
    • /
    • v.58 no.4
    • /
    • pp.262-267
    • /
    • 2014
  • Unused medication disposal is a burden due to the cost of disposing as well as the cost of the drugs. Investigating medication returns is expected to suggest areas of intervention to reduce unused medications. Purpose: The aim of this study was to examine types, quantity, costs, active pharmaceutical ingredients, and therapeutic category of the medications returned to community pharmacies. Method: From January 15, 2014 to February 28, 2014, the medications returned to the 17 community pharmacies in Gimhae, Jinju, and Incheon, Korea were examined. The pharmacists and student volunteers worked cooperatively to identify the medications and analyze drug cost of prescription pill medications returned to the pharmacies. Results: A total of 2,720 pills of prescription medication were analyzed and 91 active pharmaceutical ingredients were identified. According to the Anatomical Therapeutic Chemical (ATC) classification, the most predominant group was A (alimentary tract and metabolism) with 33.3%, followed by N (nervous system) with 15.0%. With regard to the drug cost of groups, group A was the highest with 26.6%, followed by J01 (antibacterials for systemic use) with 20.2% and N (nervous system) with 18.3%. The total cost of the oral pill prescription medications was 468,477 won. Conclusion: The result from this study implies that unused drugs impose a significant cost to the health care system in Korea. In this study, medicines used to treat gastrointestinal conditions were returned most frequently with the highest drug cost. Further research in nationwide level is necessary to establish strategies to reduce the wastage of unused medicines.

Properties of Moisture Distribution on Bentonite by the Responses of Complex Dielectric Constant (복소유전율상수 반응에 의한 벤토나이트 수분분포 특성 연구)

  • Kim Man-li;Jeong Gyo-Cheo
    • The Journal of Engineering Geology
    • /
    • v.15 no.3
    • /
    • pp.281-288
    • /
    • 2005
  • To evaluate a property of moisture distribution and volumetric water content on bentonite media the responses of complex dielectric constant were used which are measured by Frequency Domain Reflectometry with Vector Network Analyzer (FDR-V) system. The bentonite is widely used a barrier liner system in the waste disposal site, recently. In case of barrier liner system, generally, the coefficient of permeability should have to less than 10-7cm/sec. According to the results, the complex dielectric constants are increasing with increase the volumetric water content and temperature together. Also the variation of complex dielectric constant due to temperature gradient is confirmed that the moisture movements are increasing with the variations of temperature from high range to low range, which is represented the property of moisture distribution in the bentonite.

Hydrogeological Performance Assessment for Underground Oil Storage Caverns (지하유류비축시설 수리안정성 평가방안)

  • 김천수;배대석;김경수;고용권;송승호
    • The Journal of Engineering Geology
    • /
    • v.7 no.3
    • /
    • pp.229-245
    • /
    • 1997
  • There are Common aspects between the underground oil storage cavern and the radioactive waste disposal facility. Both facilities use appropriately the intrinsic natural berrier characteristics of the rock mass and additionally the engineered barrier system for the long term safety. The geological structures and their hydrogeological characteristics in a faactured rock mass act a major role in the safety and performance of the underground oil storage facility through the design, construction and the operation stages. Because the fracture system distributed in a fractured rock block is complicated owing to their own geometrical and hydrogeological attributes, the hydrogeological perforrmrnce of the facility would depend mainly upon the understandings of their characteristics. This study reviews the uncertainties and key issues which have to be considered to analyse the groundwater flow system in a fractured rock mass and proposes the techniques applicable to characterize the hydrogeological parameter.

  • PDF

Equilibrium Concentration of Radionuclides in Cement/Groundwater/Carbon Steel System

  • Keum, D.K.;Cho, W.J.;Hahn, P.S.
    • Nuclear Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.127-137
    • /
    • 1997
  • Equilibrium concentrations of major elements in an underground repository with a capacity of 100,000 drums have been simulated using the geochemical computer code (EQMOD). The simulation has been carried out at the conditions of pH 12 to 13.5, and Eh 520 and -520 mV. Solubilities of magnesium and calcium decrease with the increase of pH. The solubility of iron increases with pH at Eh -520 mV of reducing environment while it almost entirely exists as the precipitate of Fe(OH)$_3$(s) at Eh 520 mV of oxidizing environment. All of cobalt and nickel are predicted to be dissolved in the liquid phase regardless of pH since the solubility limit is greater than the total concentration. In the case of cesium and strontium, all forms of both ions are present in the liquid phase because they have negligible sorption capacity on cement and large solubility under disposal atmosphere. And thus the total concentration determines the equilibrium concentration. Adsorbed amount of iodide and carbonate are dependent on adsorption capacity and adsorption equilibrium constant. Especially, the calcite turns out to be a solubility-limiting phase on the carbonate system. In order to validate the model, the equilibrium concentrations measured for a number of systems which consist of iron, cement, synthetic groundwater and radionuclides are compared with those predicted by the model. The concentrations between the model and the experiment of nonadsorptive elements cesium, strontium, cobalt nickel and iron, are well agreed. It indicates that the assumptions and the thermodynamic data in this work are valid. Using the adsorption equilibrium constant as a free parameter, the experimental data of iodide and carbonate have been fitted to the model. The model is in a good agreement with the experimental data of the iodide system.

  • PDF

Synthesis of Zeolite from Sewage Sludge Incinerator Fly Ash by Hydrothermal Reaction in Open System (Open System 수열반응을 통한 하수슬러지 소각 비산재의 Zeolite 합성가능성)

  • Lee, Je-Seung;Eom, Seok-Won;Choi, Han-Young
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.4
    • /
    • pp.317-324
    • /
    • 2007
  • The sewage treatment sludge disposal has become a serious environmental problem because of restricted direct land-filling and oceandumping in spite of their large amounts discharged. So the recycling of sewage treatment sludge is very useful alternative for waste management. Here, we studied the feasibility of zeolite synthesis in open system from the sewage treatment sludge incinerator fly ash by means of hydrothermal synthesis. We considered the concentration of NaOH, reaction time, reaction temperature and reaction step as synthesis variables. The phase of zeolite products was identified by X-ray diffractometer(XRD) and ammonium ion exchange test was performed for the raw fly ash and two zeolite products(Z-3 and Z-5). In leaching test of the raw fly ash, hazard metal is detected very low level compared with regulatory leaching test standard. But in total recoverable test, the total contents of the fly ash were very high in terms of the standard for waste-derived fertilizer. Through hydrothermal reaction, small amount of zeolite P was synthesied in 1 N of NaOH solution and relatively large amount of hydroxysodalite was synthesied in 3 N and 5 N of NaOH solution with similar peak intensity. Addition of an aging step in the synthesis didn't increase the amount of zeolite phase. Maximum $NE_4^+-N$ exchange capacity is 1.49 mg $NH_4^+-N/g$ in Z-3 and 1.38 mg $NH_4^+-N/g$ in Z-5. Most of the ammonium ion is exchanged in 30 minutes and disorption did not occur until 5 hours.