• Title/Summary/Keyword: Disposal capacity

Search Result 160, Processing Time 0.031 seconds

The Effect of Waste Disposal Volume on Earnings Management Behavior in the Construction Waste Disposal Industry - Focused on the Size of the Licensed Storage Capacity and the Location of the Waste Disposal Site - (건설폐기물 기업의 폐기물처리량이 이익조정에 미치는 영향 - 허용보관량 규모와 폐기물처리장 소재지를 중심으로 -)

  • Kim, Dae-Bong;Lee, Hyo-Ik
    • Resources Recycling
    • /
    • v.24 no.5
    • /
    • pp.40-55
    • /
    • 2015
  • The purpose of this study is to analyse whether the waste disposal volume level in the construction waste disposal industry makes a different effect on earnings management behaviour by size of the licensed storage capacity and by location of the waste disposal site. The empirical results of this study are as follows. First, the waste disposal volume significantly influences earnings management behavior. When it comes to the size of licensed storage capacity in the small-sized capacity firms, the smaller waste disposal volume firms make more aggressive earnings management by using discretionary accruals. On the other hand, in the large-sized capacity firms, more waste disposal volume firms report higher earnings by adjusting more discretionary accruals. Second, the effects of waste disposal volume on the earnings management show different pattern depending on the location of waste disposal site. When the firms are located in the non-capital regions, the smaller waste disposal volume firms report higher earnings by adjusting discretionary accruals as well as by using real activities earnings management. However, the firms located in the capital regions show more aggressive earnings management when they have higher waste disposal volume level.

Deployment of Radioactive Waste Disposal Facility with the Introduction of Nuclear Power Plants (NPP) in Kenya

  • Shadrack, A.;Kim, C.L.
    • Journal of Nuclear Fuel Cycle and Waste Technology
    • /
    • v.1 no.1
    • /
    • pp.37-47
    • /
    • 2013
  • This paper describes basic plans for the development of a radioactive waste disposal facility with the introduction of Nuclear Power Plants (NPPs) for Kenya. The specific objective of this study was to estimate the total projected waste volumes of low- and intermediate-level radioactive waste (LILW) expected to be generated from the Kenyan nuclear power programme. The facility is expected to accommodate LILW to be generated from operation and decommissioning of nuclear power plants for a period of 50 years. An on-site storage capacity of 700 $m^3$ at nuclear power plant sites and a final disposal repository facility of more than 7,000 $m^3$ capacity were derived by considering Korean nuclear power programme radioactive waste generation data, including Kori, Hanbit, and APR 1400 nuclear reactor data. The repository program is best suited to be introduced roughly 10 years after reactor operation. This study is important as an initial implementation of a national LILW disposal program for Kenya and other newcomer countries interested in nuclear power technology.

Proposal of an Improved Concept Design for the Deep Geological Disposal System of Spent Nuclear Fuel in Korea

  • Lee, Jongyoul;Kim, Inyoung;Ju, HeeJae;Choi, Heuijoo;Cho, Dongkeun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.spc
    • /
    • pp.1-19
    • /
    • 2020
  • Based on the current high-level radioactive waste management basic plan and the analysis results of spent nuclear fuel characteristics, such as dimensions and decay heat, an improved geological disposal concept for spent nuclear fuel from domestic nuclear power plants was proposed in this study. To this end, disposal container concepts for spent nuclear fuel from two types of reactors, pressurized water reactor (PWR) and Canada deuterium uranium (CANDU), considering the dimensions and interim storage method, were derived. In addition, considering the cooling time of the spent nuclear fuel at the time of disposal, according to the current basic plan-based scenarios, the amount of decay heat capacity for a disposal container was determined. Furthermore, improved disposal concepts for each disposal container were proposed, and analyses were conducted to determine whether the design requirements for the temperature limit were satisfied. Then, the disposal efficiencies of these disposal concepts were compared with those of the existing disposal concepts. The results indicated that the disposal area was reduced by approximately 20%, and the disposal density was increased by more than 20%.

Thermal Properties of Buffer Material for a High-Level Waste Repository Considering Temperature Variation (고준위폐기물 처분시설 완충재의 온도변화에 따른 열물성)

  • Yoon, Seok;Kim, Geon-Young;Park, Tae-Jin;Lee, Jae-Kwang
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.10
    • /
    • pp.25-31
    • /
    • 2017
  • The buffer is one of the major components of an engineered barrier system (EBS) for the disposal of high-level radioactive waste (HLW). As the buffer is located between a disposal canister and host rock, it is indispensable to assure the disposal safety of high-level radioactive waste. It can restrain the release of radionuclide and protect the canister from the inflow of groundwater. Since high quantity of heat from a disposal canister is released to the surrounding buffer, thermal properties of the buffer are very important parameters for the analysis of the entire disposal safety. Especially, temperature criteria of the compacted bentonite buffer can affect the design of HLW repository facility. Therefore, this paper investigated thermal properties for the Kyungju compacted bentonite buffer which is the only bentonite produced in South Korea. Hot wire method and dual probe method were used to measure thermal conductivity and specific heat capacity of the compacted bentonite buffer according to the temperature variation. Thermal conductivity and specific heat capacity were decreased dramatically when temperature variation was between $22^{\circ}C{\sim}110^{\circ}C$ as degree of saturation decreased according to the temperature variation. However, there was little variation under the high temperature condition at $110^{\circ}C{\sim}150^{\circ}C$.

A Prediction of Specific Heat Capacity for Compacted Bentonite Buffer (압축 벤토나이트 완충재의 비열 추정)

  • Yoon, Seok;Kim, Geon-Young;Baik, Min-Hoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.3
    • /
    • pp.199-206
    • /
    • 2017
  • A geological repository for the disposal of high-level radioactive waste is generally constructed in host rock at depths of 500~1,000 meters below the ground surface. A geological repository system consists of a disposal canister with packed spent fuel, buffer material, backfill material, and intact rock. The buffer is indispensable to assure the disposal safety of high-level radioactive waste, and it can restrain the release of radionuclides and protect the canister from the inflow of groundwater. Since high temperature in a disposal canister is released to the surrounding buffer material, the thermal properties of the buffer material are very important in determining the entire disposal safety. Even though there have been many studies on thermal conductivity, there have been only few studies that have investigates the specific heat capacity of the bentonite buffer. Therefore, this paper presents a specific heat capacity prediction model for compacted Gyeongju bentonite buffer material, which is a Ca-bentonite produced in Korea. Specific heat capacity of the compacted bentonite buffer was measured using a dual probe method according to various degrees of saturation and dry density. A regression model to predict the specific heat capacity of the compacted bentonite buffer was suggested and fitted using 33 sets of data obtained by the dual probe method.

Preliminary Design Evaluation of Auxiliary Equipment for Transportation and Storage of Multi-purpose Canister (사용후핵연료 다목적 캐니스터의 운반 및 저장 보조 설비에 대한 예비설계 평가)

  • Chang Min Shin;Sang Hwan Lee;Yeon Oh Lee;In Su Jung;Gil Yong Cha
    • Journal of Radiation Industry
    • /
    • v.17 no.3
    • /
    • pp.309-320
    • /
    • 2023
  • A multi-purpose canister (MPC) was developed for the purpose of transportation, storage and disposal of spent nuclear fuel (SNF) and has the advantage of minimizing repackaging between management stages of SNF. Considering the typical rock characteristics in Korea, a disposal canister is expected to contain 4 assemblies of Pressurized water reactor (PWR) SNF. The capacity of the MPC should be similarly designed with the disposal canister. However, the MPC with four SNF assemblies is expected to be less efficient in transporting and storing compared to a large-capacity canister. Therefore, a preliminary concept was derived for an auxiliary equipment that can transport and store multiple MPCs in a large overpack. A previously derived concept from US was thoroughly reviewed, and the preliminary concept was revised considering domestic situations including crane capacity and others. In addition, the safety of the normal transportation and storage of the MPC placed in transportation and storage overpack was evaluated with the auxiliary equipment.

Influence of Internal and External Capacity on Adults' Food Waste Disposal Capacity (내적역량과 외적역량이 성인의 식품 쓰레기 처분에 대한 실천역량에 미치는 영향)

  • Kim, Ji Eun;Choi, Kyoung Sook
    • Korean Journal of Community Nutrition
    • /
    • v.26 no.6
    • /
    • pp.455-466
    • /
    • 2021
  • Objectives: The purpose of this study was to investigate the effects of internal and external capacity on the practical capacity for food waste disposal in adults. Methods: The study subjects were 410 adults who answered a structured questionnaire. The survey was conducted in January 2021. Data were analyzed through descriprive analysis, t-test, ANOVA, and multiple regression analysis using the SPSS Win 24.0. Results: First, in the analysis of internal capacity, attitude (3.95 out of 5 points) scored higher than knowledge (3.59 points). Attitudes showed significant differences according to gender (P < 0.001), age (P < 0.001), and income (P < 0.001). Knowledge showed significant differences according to gender (P < 0.01) and age (P < 0.05). Second, in the analysis of capacity, market constraints (3.73 points) scored the highest, followed by institutional conditions (3.48 points) and reference group (3.36 points). Market constraints differed according to gender (P < 0.001), and institutional conditions differed according to income (P < 0.001). There was a significant difference in the reference group according to the level of education (P < 0.05) and income (P < 0.05). Third, the practical capacity scores appeared in the order of separating discharge behavior, using behavior, purchasing behavior, and leadership behavior. Separating discharge behavior showed significant differences according to gender (P < 0.001), education level (P < 0.05), and income (P < 0.01). Using behavior showed a difference according to gender (P < 0.01), and purchasing behavior showed a significant difference according to income (P < 0.05). Leadership behavior showed no difference according to demographic factors. Fourth, internal capacity and external capacity showed a significant positive relationship with practical capacity. Factors affecting purchasing behavior were knowledge, attitude, institutional conditions, and reference group, and their explanatory power was 53%. Factors influencing using behavior were knowledge, attitude, institutional conditions, and reference group, and had an explanatory power of 37%. Leadership behavior was influenced by institutional conditions and the reference group, with an explanatory power of 31%. Conclusions: Internal capacity, external capacity, and practical capacity show differences according to demographic factors. Factors influencing the practical capacity of adults were knowledge, attitude, institutional conditions, and reference group.

Evaluation of Carrying Capacity and Sustainability of Jeju Island using Onishi Model (Onishi Model을 이용한 제주도 기반시설 환경용량 산정 및 지속가능성 평가)

  • Park, Jinseon;Kim, Solhee;Kim, Yooan;Hong, Sewoon;Suh, Kyo
    • Journal of Korean Society of Rural Planning
    • /
    • v.26 no.2
    • /
    • pp.95-106
    • /
    • 2020
  • The Onishi model is an objective indicator which can be used to evaluate the relevance of city environmental management in regard to the capacities and processing status of existing urban infrastructure. This study is to analyze the facility carrying capacity and processing status of Jeju Island, a famous tourist site in South Korea. General variables covered by the Onishi model are considered, including water supply, wastewater treatment, waste disposal, and air pollution. Furthermore, the facility carrying capacities for transportation, such as airports and ports, as well as accommodations are assessed as variables pertinent to the characteristics of Jeju island. With the annual number of tourists exceeding that of residents on the island, more facilities for sewage treatment and waste disposal are required. Furthermore, transportation and accommodations used by tourists have already exceeded their capacity. For the future sustainability of Jeju Island, a plan will be needed for adjusting the volume of tourists based on the capacity of each relevant facility.

Bearing Capacity of Waste Landfill Reinforced by Geosynthetics (토목섬유로 보강된 폐기물 매립지반의 지지력 특성)

  • Shin, Eun-Chul;Park, Jeong-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.3
    • /
    • pp.39-46
    • /
    • 2007
  • Many industrialized countries of the world have many problems about the reuse of waste landfill area because the increase of terminated waste disposal landfill. Especially, the effective use of the terminated waste disposal landfill nearby the urban area has been demanded, because of the lack of the usable land. However, the reuse of terminated waste disposal landfill site is needed an adequate stabilization of ground for increasing the bearing capacity and reduce the allowable settlement for the given structure. This study is to evaluate the applicability of geosynthetics for the increment of bearing capacity of solid waste landfill ground. The in-situ cyclic plate loading tests were performed to determine the dynamic and static behaviors of reinforced ground with geosynthetics. Four series of test were conducted with variations of geosynthetics, number of geogrid layer. Based on the cyclic plate load test results, the bearing capacity ratio, subgrade modulus of ground, and the elastic rebound ratio were determined.

  • PDF

Estimation on Bearing Capacity of Waste Landfill Reinforced by Geosynthetics Using Numerical Analysis (수치해석에 의한 토목섬유 보강 폐기물 매립지반의 지지력 평가)

  • Shin, Eunchul;Park, Jeongjun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.2
    • /
    • pp.67-74
    • /
    • 2008
  • Many industrialized countries of the world have many problems about the reuse of waste landfill area because of the increase of terminated waste disposal landfill. Especially, the effective use of the terminated waste disposal landfill nearby the urban area has been demanded, because of the lack of the usable land. However, in case of the construction of the building on such a landfill, ground settlement and reduced bearing capacity would be occurred without ground stabilization and proper reinforcement. This study is to evaluate the applicability of geosynthetics for the increment of bearing capacity of solid waste landfill ground. A numerical simulation has been undertaken to model a layer of weathered soil overlaying a layer of geosynthetic reinforcement and waste disposal ground. The proposed analytical model can be used to obtain surface settlement characteristic in the two-dimensional deformation related reinforcement.

  • PDF