• Title/Summary/Keyword: Disposal System Design

Search Result 175, Processing Time 0.027 seconds

A Method for Operational Safety Assessment of a Deep Geological Repository for Spent Fuels

  • Jeong, Jongtae;Cho, Dong-Keun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.spc
    • /
    • pp.63-74
    • /
    • 2020
  • The operational safety assessment is an important part of a safety case for the deep geological repository of spent fuels. It consists of different stages such as the identification of initiating events, event tree analysis, fault tree analysis, and evaluation of exposure doses to the public and radiation workers. This study develops a probabilistic safety assessment method for the operational safety assessment and establishes an assessment framework. For the event and fault tree analyses, we propose the advanced information management system for probabilistic safety assessment (AIMS-PSA Manager). In addition, we propose the Radiological Safety Analysis Computer (RSAC) program to evaluate exposure doses to the public and radiation workers. Furthermore, we check the applicability of the assessment framework with respect to drop accidents of a spent fuel assembly arising out of crane failure, at the surface facility of the KRS+ (KAERI Reference disposal System for SNFs). The methods and tools established through this study can be used for the development of a safety case for the KRS+ system as well as for the design modification and the operational safety assessment of the KRS+ system.

A Method of System Effectiveness Analysis for Remote-Operated Unmanned Ground Vehicles Using OneSAF (OneSAF를 이용한 원격조종 지상무인차량 체계효과분석 방법)

  • Han, Sang Woo;Pyun, Jai Jeong;Cho, Hyunsik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.40 no.4
    • /
    • pp.388-395
    • /
    • 2014
  • Nowadays unmanned ground systems are used in supporting of surveillance and explosive ordnance disposal. Also, we expect that will be used to remarkably enhance combat capability through network-based cooperative operations with other combat systems. In order to effectively develop those unmanned systems, we needs a systematic method to analyze combat effectiveness and validate required operation capabilities. In this paper, we propose a practical approach to simulate remote-operated unmanned ground systems by using OneSAF, an US-Army simulation framework. First of all, we design a simulation model of unmanned system by integrating with core components for wireless communications and remote control of mobility and fire. Next, we extend OneSAF functionality to create communication links that connects a remote controller with an unmanned vehicle and define a simulated behavior to operate unmanned vehicles via the communication links. Finally, we demonstrate the feasibility of the proposed model within OneSAF and summarize system effectiveness analysis results.

Probabilistic Q-system for rock classification considering shear wave propagation in jointed rock mass

  • Kim, Ji-Won;Chong, Song-Hun;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.30 no.5
    • /
    • pp.449-460
    • /
    • 2022
  • Safe underground construction in a rock mass requires adequate ground investigation and effective determination of rock conditions. The estimation of rock mass behavior is difficult, because rock masses are innately anisotropic and heterogeneous at different scales and are affected by various environmental factors. Quantitative rock mass classification systems, such as the Q-system and rock mass rating, are widely used for characterization and engineering design. The measurement of rock classification parameters is subjective and can vary among observers, resulting in questionable accuracy. Geophysical investigation methods, such as seismic surveys, have also been used for ground characterization. Torsional shear wave propagation characteristics in cylindrical rods are equal to that in an infinite media. A probabilistic quantitative relationship between the Q-value and shear wave velocity is thus investigated considering long-wavelength wave propagation in equivalent continuum jointed rock masses. Individual Q-system parameters are correlated with stress-dependent shear wave velocities in jointed rocks using experimental and numerical methods. The relationship between the Q-value and the shear wave velocity is normalized using a defined reference condition. This relationship is further improved using probabilistic analysis to remove unrealistic data and to suggest a range of Q-values for a given wave velocity. The proposed probabilistic Q-value estimation is then compared with field measurements and cross-hole seismic test data to verify its applicability.

Exploring sustainable packaging design (지속 가능한 포장 디자인 탐구)

  • AN BOWEN
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.495-499
    • /
    • 2024
  • This article summarizes the importance, definition, key strategies and future directions of sustainable packaging design.In modern society, sustainable packaging design is not only concerned with environmental protection and resource conservation, but also involves economic, social and cultural sustainable development.This paper explores strategies to reduce environmental burden and promote ecological balance by using environmentally friendly materials, optimizing packaging design, improving packaging recyclability and reuse. In addition, the article emphasizes the importance of design innovation, such as adopting a simplified design concept and modular system, as well as increasing the versatility of packaging.It also explores the application of life cycle assessment in packaging design to ensure that every step from design to disposal minimizes environmental impact. Finally, despite the environmental and social benefits that sustainable packaging design brings, it still faces technical, economic and regulatory challenges in practice.Future design will require interdisciplinary collaboration, integration of advanced technologies, consumer education and engagement, and enhanced policy and standard-setting to promote widespread adoption and practice of sustainable packaging.

An Experimental Study on the Application of Recyeled Aggregate Concrete Using the Demolished High Strength Conrete (Part 1 The Experimental Program and Preliminary Experiment) (고강도영역 재생골재 콘크리트의 현장적용을 위한 실험적 연구 (제 1보 실험계획 및 예비실험))

  • 김규용;최민수;김진만;남상일;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.177-182
    • /
    • 1995
  • Large-scaling recycling of demolished concrete will contribute not only to the solution of a growing waste disposal problem. it will also help to conserve natural resoures of sand and gravel and to secure future supply of reasonly priced aggregates for builiding and other construction purposes within large urban areas. because recycled aggregate particles consist of substaintial amount of relatively soft cement paste component, it is less resistant to mechanical actions. With this view in mind, to obtain a reference data for the development of recycling system and to a basic data the guideline of recycled aggregate concrete construction and mix design, this study deals with the comparative analysis of the workability and engineering properties of recycled aggregate concrete according to the factors, such as blending ratio of recycled aggregate with the natural aggregate, addition of flyash, water cement ration.

  • PDF

Vibration-based Energy Harvester for Wireless Condition Monitoring System (무선 상태감시 시스템용 진동 기반 에너지 획득 장치)

  • Cho, Sung-Won;Son, Jong-Duk;Yang, Bo-Suk;Choi, Byeong-Keun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.4
    • /
    • pp.393-399
    • /
    • 2009
  • Historically, industrial condition monitoring has been performed by costly hard-wired sensors or infrequent checks by maintenance personnel equipped with hand held monitoring equipment. Self- powered wireless condition monitoring systems provides on-line monitoring of critical plant and machinery providing major operating cost benefits. A vibration energy harvester(VEH) is a device that converts kinetic energy occurred by machine vibration into useable electrical energy. Using VEHs to power wireless monitoring systems can yield significant benefits: increased reliability, lower life time costs and no battery disposal issues, etc. This paper proposes the novel prototype design and manufacturing of a VEH that can eliminate the effect by failed batteries.

A Study on the Environment Management System of Procter & Gamble (P&G사의 환경경영시스템에 관한 고찰)

  • Kim, Hyun-Soo;Park, Young-Taek
    • Journal of Korean Society for Quality Management
    • /
    • v.27 no.2
    • /
    • pp.183-200
    • /
    • 1999
  • ndustrial development began to cause serious pollution problems. Most of the environmental problems are related with operations of industrial companies. Environmental problems should be considered at all the stages of business activities or processes, from product design to new forms of packaging, from marketing to disposal. This paper suggests that how to cope with environmental issues is an important factor in the global market, and environmental management has become one of the key success factor. Through the survey of P&G's environmental management, it is intended to provide a chance to benchmark or give a cue on how to conduct the environmental management.

  • PDF

A Study on the Basic Procedure of LCC Analysis for the Urban Transit Vehicle (도시철도 차량에서 LCC 분석의 기본 절차에 관한 연구)

  • Chung, Kwang-Woo;Jeon, Young-Seok;An, Joon-Yong;Kim, Chul-Su;Chung, Jong-Duk
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.643-652
    • /
    • 2009
  • This paper presents brief history and a state-of-the-art survey of Life Cycle Cost (LCC) analysis, in particular LCC analysis in the Urban Transit Vehicle, based on a internationl codes and standards related to LCC analysis. A main objective of the LCC analysis is to quantify the total cost of ownership of a product throughout its full life cycle, which includes research and development, construction, operation and maintenance, and disposal. The predicted LCC is useful information for decision making in purchasing a product, in optimizing design, in scheduling maintenance, or in planning overhaul. This paper presents a LCC procedure consisting of seven steps, which are "Problems definition", "Cost elements definition", "System modeling", "Data collection", "Cost profile development", "Evaluation", and "Verification". Sub-activities to be encompassed in the seven steps procedure are described.

  • PDF

A Study of the Maintenance information DB document Template for the Life Cycle Cost Calculation of the Railroad vehicle (철도차량 수명주기비용 계산을 위한 유지보수정보 DB 템플릿에 관한 연구)

  • Kim, Jae-Hoon;Shim, Yeo-Wool;Park, Jun-Seo;Jun, Hyun-Kyu;Kim, Jong-Woon
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1097-1104
    • /
    • 2008
  • Life cycle costing is one of the most effective approaches for the cost analysis of long-term life products, like as railroad vehicle. Life cycle costing includes the cost of concept design, development, manufacture, operating, maintenance and disposal. Especially, life cycle costing in the railroad industry has been focused on the maintenance cost. In this paper, we investigated the standard, guide and maintenance information of railroad vehicle. For this purpose, we suggested the unique templates of railroad vehicle maintenance information. We also performed maintenance cost analysis on the some sub-system of railroad vehicle for the case study.

  • PDF

The permeability charateristic of Z-type sheet pile joints under water sealing conditions (Z형 강널말뚝의 오염물질 차단효과)

  • Hong, Seung-Seo;Lee, Yong-Soo;Chung, Ha-Ik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1283-1288
    • /
    • 2009
  • In general steel sheet piles are used in the containment system, which are vertical barrier systems for waste disposal and landfill purposes, and roads in excavation for temporary structure. This paper presents case study of the use of an interlocking sheet pile for water and containment. Cut-off Z-type sheet pile joints are investigated to determine their permeability from the field test. Four different joint sealing materials are used in field test. The results showed joint permeability is significant time-dependent and joint-dependent. These are explored and conclusions on permeability characteristics of different sealants are noted. A case study gives a design example as well as suggestion on permeability and water tightness can be implemented in using the sheet pile barrier in civil and environment works. From the test results, the effective sealing programs of sheet pile interlocks are suggested.

  • PDF