• Title/Summary/Keyword: Disposable cassette

Search Result 2, Processing Time 0.016 seconds

The Development of Radiopharmaceutical Synthesizer and its FDG Synthesis Verification

  • Jong Min Kim;Il Koo Cheong;Chan Soo Park;Hee Seup Kil;Cheol Soo Lee
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.8 no.2
    • /
    • pp.87-93
    • /
    • 2022
  • [18F]FDG is known as the most widely used radiopharmaceutical in the imaging field of nuclear medicine worldwide. With the introduction of PET equipment, the demand for [18F]FDG has increased and the production volume has also increased. However, in order to increase production, the use of 18F radioisotope must be increased or [18F]FDG must be synthesized in high yield. Therefore, in order to meet the high yield and purity of radiopharmaceuticals, a radiopharmaceutical automatic synthesizer was required. As the use of [18F]FDG increased, automated synthesizer manufacturers supplied various types of radiopharmaceutical automated synthesizers to the market. In this study, we developed a commercialized [18F]FDG radiopharmaceutical automatic synthesizer (sCUBE FDG) using a disposable cassette type that complies with GMP developed by FutureChem, a leading radiopharmaceutical company. We used sCUBE FDG to verify the production process, radiopharmaceutical's quality (radiochemical purity, etc.), and radiochemical yield of [18F]FDG. As a result of optimizing the automatic synthesis process and synthesizing a total of 30 times, the production time was 35 ± 3 minutes and the average production yield was 65.6%.

Development of RFID for Automatic Radiopharmaceuticals Preparation System (방사성 의약품 자동합성 장치용 RFID 시스템의 개발)

  • Kim, Myung-Sik;Kim, Kwang-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.5C
    • /
    • pp.429-436
    • /
    • 2012
  • In this paper, an RFID system for the automatic preparation system of positron emission tomography (PET) radiopharmaceuticals is developed. Since the preparation system uses radioactive isotope, the preparation system is generally placed in lead-shielded hot-cell. Disposable cassettes including tubes and valves are used in the preparation system, since they are easily contaminated by radioactivity during preparation of radiopharmaceuticals. Currently, a system for preventing re-use of the cassette and managing the information about the preparation precess and result independently from the PC which control the preparation system is highly required for preventing danger from the radiation accident. Since RFID can store and re-write relatively large amount of information, it is suitable for the purpose. However, it is hard to read multiple cassettes' information using antennas installed on the metallic surfaces with current RFID systems. For the problem, we improve RFID system in two directions. First, the interface of the RFID reader is changed then it is possible that multiple readers can be daisy-chained. Also, antenna is tuned while inserting in a metallic coated antenna case, then the effect from the metallic surface of the preparation system is minimized. The test result using the developed system shows that the developed RFID system can read multiple tags using the antennas which are attached on the metallic surface.