• 제목/요약/키워드: Display converter

검색결과 213건 처리시간 0.022초

고성능 디스플레이 변환기의 FPGA 설계 (FPGA Design of High-performance Display Converter)

  • 최현준;서영호;김동욱
    • 한국정보통신학회논문지
    • /
    • 제14권8호
    • /
    • pp.1895-1900
    • /
    • 2010
  • 본 논문에서는 4개의 기능 블록들로 구성된 디스플레이 변환기의 구조를 제안하였다. 디스플레이 변환기의 4개의 기능 블록들은 각각 color space converter, de-interlacer, video display scaler, gamma corrector 등이다. 제안한 구조들은 실제 하드웨어로 구현한 후 정확한 동작을 검증하였다. 구현된 디스플레이 변환기는 Altera 사의 Stratix 디바이스에서 7,629개의 LUT, 6,800개의 Logic Register를 사용하였고, 최대 270 MHz에서 동작이 가능하였다.

탭인덕터 부스트 컨버터를 이용한 LED-드라이버 설계 (Design of the Tapped-Inductor Boost Converter for LED Backlights Driving)

  • 정지욱;박동서;이효길;박신균
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2013년도 전력전자학술대회 논문집
    • /
    • pp.177-179
    • /
    • 2013
  • This paper presents an LED driver which requires a high voltage gain (5-6 times). To achieve a high voltage gain, the tapped-inductor boost converter topology was used and through the analysis of converter's steady-state and its dynamic characteristics, the product design's reliability and validity were verified.

  • PDF

디스플레이 데이터 구동용 사이클릭 디지털 아날로그 컨버터의 특성평가 (Characterization of Cyclic Digital-to-Analog Converter for Display Data Driving)

  • 이용민;이계신
    • 전자공학회논문지SC
    • /
    • 제47권3호
    • /
    • pp.13-18
    • /
    • 2010
  • 본 논문은 디스플레이 데이터 구동부에 사용되는 디지털 아날로그 컨버터를 위해 스위치 커패시터형 cyclic 디지털 아날로그 컨버터를 제안하고 특성을 검토한다. 본 제안의 디지털 아날로그 컨버터는 구성이 간단하여 저전력, 소면적의 디스플레이 구동 IC설계에 적합하다. 회로레벨 시뮬레이션을 통해 OP앰프 입력의 오프셋전압에 대한 영향이 적고 커패시터간의 부정합이 0.5% 정도까지는 회로성능에 별 영향이 없음을 검증한다.

Boost-Flyback topology를 이용한 1KW급 Converter (1KW converter using boost-flyback topology)

  • 황선남;채형준;임성규;이준영
    • 반도체디스플레이기술학회지
    • /
    • 제7권2호
    • /
    • pp.7-12
    • /
    • 2008
  • This paper proposed DC-DC converter for fuel cell that have high voltage and high current output characteristics. It is required step-up converter to use by general power supply, because the general rated voltage of fuel cell is low about 20$\sim$50V. The miniaturization of converter and DC link voltage can be controlled and high quality of output voltage uses mainly DC-DC converter. The boost converter and buck-boost converter do not get high boosting ratio. It is that proposed boost-flyback converter. Through simulation and an experiment, it could get high boosting ratio and efficiency more than 90%.

  • PDF

Load Current Prediction Method for a DC-DC Converter in Plasma Display Panel

  • Chae, S.Y.;Hyun, B.C.;Kim, W.S.;Cho, B.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.609-612
    • /
    • 2007
  • This paper describes a new method to predict the load current of a dc-dc converter. The load current is calculated using the video information of the PDP. The output capacitance of the dc-dc converter can be reduced by utilizing the predicted load current, which results in a cost reduction of the power system in the PDP.

  • PDF

마이크로프로세서 제어를 이용한 DC-DC Buck Converter 설계 (Design of DC-DC Buck Converter Using Micro-processor Control)

  • 장인혁;한지훈;임홍우
    • 공학기술논문지
    • /
    • 제5권4호
    • /
    • pp.349-353
    • /
    • 2012
  • Recently, Mobile multimedia equipments as smart phone and tablet pc requirement is increasing and this market is also being expanded. These mobile equipments require large multi-media function, so more power consumption is required. For these reasons, the needs of power management IC as switching type dc-dc converter and linear regulator have increased. DC-DC buck converter become more important in power management IC because the operating voltage of VLSI system is very low comparing to lithium-ion battery voltage. There are many people to be concerned about digital DC-DC converter without using external passive device recently. Digital controlled DC-DC converter is essential in mobile application to various external circumstance. This paper proposes the DC-DC Buck Converter using the AVR RISC 8-bit micro-processor control. The designed converter receives the input DC 18-30 [V] and the output voltage of DC-DC Converter changes by the feedback circuit using the A/D conversion function. Duty ratio is adjusted to maintain a constant output voltage 12 [V]. Proposed converter using the micro-processor control was compared to a typical boost converter. As a result, the current loss in the proposed converter was reduced about 10.7%. Input voltage and output voltage can be displayed on the LCD display to see the status of the operation.

VHDL과 FPGA를 이용한 Digital Power IC 설계 (Digital Power IC design using VHDL and FPGA)

  • 김민호;구본하;양오
    • 반도체디스플레이기술학회지
    • /
    • 제12권4호
    • /
    • pp.27-32
    • /
    • 2013
  • In this paper, the boost converter was implemented by digital control in many applications of the step-up. The PWM(pulse width modulation) control module of boost converter was digitized at power converter using the FPGA device and VHDL. The boost converter was designed to output a fixed voltage through the PI control algorithm of the PWM control module even if input voltage and output load are variable. The boost converter was digitized can be simplified by reducing the size of the module and the external control components. Thus, the digital power IC has advantageous for weight reduction and miniaturization of electronic products because it can be controlled remotely by setting the desired output voltage and PWM control module. The boost converter using the digital power IC was confirmed through experiments and the good performances were showed from experiment results.

Tx-Rx간 무선통신이 필요 없는 LLC 컨버터 기반 유도형 무선전력전송 시스템 구현 (Implementation of Inductive Wireless Power Transfer System based on LLC Converter without Wireless Communication between Tx and Rx)

  • 김문영;최신욱;강정일;한종희
    • 전력전자학회논문지
    • /
    • 제24권5호
    • /
    • pp.311-318
    • /
    • 2019
  • In general wireless power transfer systems (WPTSs), power transfer is controlled by the wireless communication between a transmitter (Tx) and a receiver (Rx). However, WPTS is difficult to apply in electronic products that do not have batteries, such as TVs. A WPTS with resonators based on a transformer of LLC series resonant converter is proposed in this study to eliminate wireless communication units between a Tx and an Rx. The proposed system operates at the boundary of the resonance frequency, and the required power can be stably supplied to authorized devices even though some misalignment occurs. Moreover, standby power standards for the electronic product can be satisfied.

하우스킵핑 A/D 변환기의 테스트 알고리즘과 측정 (Test Algorithm and Measurement of Housekeeping A/D Converter)

  • 박용수;유흥균
    • 반도체디스플레이기술학회지
    • /
    • 제3권4호
    • /
    • pp.19-27
    • /
    • 2004
  • The characteristic evaluation of A/D converter is to measure the linearity of the converter. The evaluation of the linearity is to measure the DNL, INL, gain error and offset error in the various test parameters of A/D converter. Generally, DNL and INL are to be measured by the Histogram Test Algorithm in the DSP-based ATE environment. And gain error and offset error are to be measured by the calculation equation of the measuring algorithm. It is to propose the new Concurrent Histogram Test Algorithm for the test of the housekeeping A/D converter used in the CDMA cellular phone. Using the proposed method, it is to measure the DNL, INL, gain error and offset error concurrently and to show the measured results.

  • PDF

전류연속 모드 탭인덕터 부스트 컨버터의 분석과 설계 (Analysis and Design of Continuous Current Mode Tapped-Inductor Boost Converter)

  • 강정일;한상규;한종희
    • 전력전자학회논문지
    • /
    • 제19권4호
    • /
    • pp.349-356
    • /
    • 2014
  • As the turns ratio of the tapped-inductor contributes to the step-up ratio, the tapped-inductor boost (TIB) converter has significantly increased level of difficulties in its analysis and design compared to the conventional boost converter where the duty ratio is the sole factor affecting the step-up ratio. In this paper, the operation of the continuous current mode TIB converter is briefly reviewed, the characteristics are analyzed in detail, and a design guideline optimizing the loss in the tapped-inductor is presented with a practical design example. Finally, experimental results from a 12V/120V prototype for 0.25A LED driver application are also presented to confirm the design.