• Title/Summary/Keyword: Display Pixel

Search Result 462, Processing Time 0.033 seconds

Optimized Gate Driving to Compensate Feed-through Voltage for $C_{ST}-on-Common$

  • Jung, Soon-Shin;Yun, Young-Jun;Park, Jae-Woo;Roh, Won-Yeol;Choi, Jong-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.73-74
    • /
    • 2000
  • In recent years, attempts have been made to greatly improve the display quality of active-matrix liquid crystal display devices, and many techniques have been proposed to solve such problems as gate signal delay, feed-through voltage and image sticking[1-3]. To improve these problems which are caused by the feed-through voltage, we have evaluated new driving methods to reduce the feed-through voltage. Two level gate-pulse was used for the gate driving of the cst-on-common structure pixels. These gate driving methods offer better feed-through characteristics than conventional simple gate pulse. Optimized step signal will compensate by step pulse time and voltage. The evaluation of the suggested driving methods were performed by using a TFT-LCD array simulator PDAST which can simulate the gate, data and pixel voltages of a certain pixel at any time and at any location on a TFT array. The effect of the new driving method was effectively analyzed.

  • PDF

A flexible, full-color OTFT-OLED display

  • Yagi, I.;Hirai, N.;Miyamoto, Y.;Noda, M.;Imaoka, A.;Yasuda, R.;Yoneya, N.;Nomoto, K.;Yumoto, A.;Kasahara, J.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1627-1630
    • /
    • 2008
  • We have demonstrated a flexible and full-color OTFT-OLED display. The display has a top-emitting pixel structure with a resolution of 80 ppi, which can be achieved by developed integration architecture of OTFTs. The 0.3-mm-thick flexible display exhibits peak brightness over 100 nit with a contrast ratio greater than 1000:1.

  • PDF

Design of Pattern Generation Circuit for Display Test (디스플레이 테스트를 위한 패턴 생성 회로 설계)

  • 조경연
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.1149-1152
    • /
    • 2003
  • Now a days, many different kinds of display technologies such as Liquid Crystal Display (LCD), Organic Light Emitting Diode (OLED), and Liquid Crystal On Silicon (LCOS) are designed. And these display technologies will be used in many application products like High Definition Televisions (HDTVs) or mobile devices. In this paper, pattern generation circuit for display test is proposed. The proposed circuit will be embedded in the control circuit of display chip. Two differenct kinds of patterns is generated by the circuit. One is block pattern for color test, and the other is line pattern for pixel test. The shape of test pattern is determined by the values of registers in pattern generation circuit. The circuit is designed using Verilog HDL RTL code.

  • PDF

Plastic Bistable Nano-Ferroelectric Suspension LCD

  • Lee, Burm-Young;Han, Jung-Hoon;Kwon, Soon-Bum;Buchnev, O.;Reznikov, Yu.;Tereshchenko, O.;Dusheiko, M.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.476-479
    • /
    • 2005
  • We developed a plastic bistable LCD based on the suspension of sub-micron ferroelectric particles in a cholesteric liquid crystal. 2.5 inch $160{\times}160$ pixel display with enhanced contrast and improved electro-optical characteristics was achieved. The display is extremely light and possesses good flexibility, demonstrating multifold bending in a radius about 1.5 cm.

  • PDF

Method for tight adhesion of two Substrates in Pixel-isolated Liquid Crystal Structure for Flexible Display Application

  • Jang, Se-Jin;Jin, Min-Young;Kim, Hak-Rin;Lee, You-Jin;Kim, Jae-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.364-367
    • /
    • 2005
  • We developed a method for adhesion of two substrates with stable liquid crystal (LC) structures using patterned microstructure and LC/polymer composite materials. In the device, the LC molecules are isolated in pixels where LCs are surrounded by patterned microstructures, and two substrates are tightly attached each other by the solidified polymer produced by anisotropic phase separation by UV exposure. These devices show very good mechanical stability against external pressure.

  • PDF

TRIZ-based Improvement of Glass Thermal Deformation in OLED Deposition Process (트리즈 기반 OLED 증착 공정의 글래스 열 변형 개선)

  • Lee, Woo-Sung;Choi, Jin Young
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.1
    • /
    • pp.114-123
    • /
    • 2017
  • The global small and mid-sized display market is changing from thin film transistor-liquid crystal display to organic light emitting diode (OLED). Reflecting these market conditions, the domestic and overseas display panel industry is making great effort to innovate OLED technology and incease productivity. However, current OLED production technology has not been able to satisfy the quality requirement levels by customers, as the market demand for OLED is becoming more and more diversified. In addition, as OLED panel production technology levels to satisfy customers' requirement become higher, product quality problems are persistently generated in OLED deposition process. These problems not only decrease the production yield but also cause a second problem of deteriorating productivity. Based on these observations, in this study, we suggest TRIZ-based improvement of defects caused by glass pixel position deformation, which is one of quality deterioration problems in small and medium OLED deposition process. Specifically, we derive various factors affecting the glass pixel position shift by using cause and effect diagram and identify radical reasons by using XY-matrix. As a result, it is confirmed that glass heat distortion due to the high temperature of the OLED deposition process is the most influential factor in the glass pixel position shift. In order to solve the identified factors, we analyzed the cause and mechanism of glass thermal deformation. We suggest an efficient method to minimize glass thermal deformation by applying the improvement plan of facilities using contradiction matrix in TRIZ. We show that the suggested method can decrease the glass temperature change by about 23% through an experiment.

A High Voltage NMOSFET Fabricated by using a Standard CMOS Logic Process as a Pixel-driving Transistor for the OLED on the Silicon Substrate

  • Lee, Cheon-An;Jin, Sung-Hun;Kwon, Hyuck-In;Cho, Il-Whan;Kong, Ji-Hye;Lee, Chang-Ju;Lee, Myung-Won;Kyung, Jae-Woo;Lee, Jong-Duk;Park, Byung-Gook
    • Journal of Information Display
    • /
    • v.5 no.1
    • /
    • pp.28-33
    • /
    • 2004
  • A high voltage NMOSFET is proposed to drive top emission organic light emitting device (OLED) used in the organic electroluminescent (EL) display on the single crystal silicon substrate. The high voltage NMOSFET can be fabricated by utilizing a simple layout technique with a standard CMOS logic process. It is clearly shown that the maximum supply voltage ($V_{DD}$) required for the pixel-driving transistor could reach 45 V through analytic and experimental methods. The high voltage NMOSFET was fabricated by using a standard 1.5 ${\mu}m$, 5 V CMOS logic process. From the measurements, we confirmed that the high voltage NMOSFET could sustain the excellent saturation characteristic up to 50 V without breakdown phenomena.

OLED Light Enhancement with Nanostructured Films

  • Lamansky, Sergey;Le, Ha;Hao, Encai;Stegall, David;Wang, Ding;Lu, Yi;Zhang, Jun-Ying;Smith, Terry L.;Gardiner, Mark;Kreilich, Leslie;Anim-Addo, Jonathan;McCormick, Fred B.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.282-285
    • /
    • 2009
  • Nanostructured OLED light extraction films have been made via roll-to-roll coating processes. Their on-axis and integrated outcoupling efficiencies reach 2X and 1.3-1.8X, respectively. Optical performance and effects of the nanostructured film on pixel blur and image ghosting will be discussed.

  • PDF

An Optimal Design for Power Consumption of 2.2"~2.6" Display System of Mobile Phone

  • Cheng, Hui-Wen;Huang, Hsuan-Ming;Li, Yiming;Tsai, Tseng-Chien;Chen, Hung-Yu;Huang, Kuen-Yu;Hsieh, Tsau-Hua
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.968-971
    • /
    • 2009
  • TFT-LCD display system is nowadays one of power-hungry components in portable products; technique of power reduction is thus essential for production of mobile phone. In this work, we minimize the display power, using computationally intelligent statistical methodology. Compared with a conventional design, 68.474% reductions on the current consumption could be obtained for a 2.2-inch of TFT-LCD display system of mobile phone. The total power consumption of the display system consisting of the backlight system and current consumption of display panel is thus successfully reduced form 68.305mW to 64.06mW (about 6.215% reductions).

  • PDF

Application of femtosecond laser hole drilling with vibration for thin Invar alloy using fine metal mask in AMOLED manufacturing process (AMOLED 제조공정에 사용되는 Fine Metal Mask 용 얇은 Invar 합금의 진동자를 이용한 펨토초 레이저 응용 홀 드릴링)

  • Choi, Won-Suk;Kim, Hoon-Young;Shin, Young-Gwan;Choi, Jun-ha;Chang, Won-Seok;Kim, Jae-Gu;Cho, Sung-Hak;Choi, Doo-Sun
    • Design & Manufacturing
    • /
    • v.14 no.3
    • /
    • pp.44-49
    • /
    • 2020
  • One of display trends today is development of high pixel density. To get high PPI, a small size of pixel must be developed. RGB pixel is arranged by evaporation process which determines pixel size. Normally, a fine metal mask (FMM; Invar alloy) has been used for evaporation process and it has advantages such as good strength, and low thermal expansion coefficient at low temperature. A FMM has been manufactured by chemical etching which has limitation to controlling the pattern shape and size. One of alternative method for patterning FMM is laser micromachining. Femtosecond laser is normally considered to improve those disadvantages for laser micromachining process due to such short pulse duration. In this paper, a femtosecond laser drilling for thickness of 16 ㎛ FMM is examined. Additionally, we introduce experimental results for controlling taper angle of hole by vibration module adapted in laser system. We used Ti:Sapphire based femtosecond laser with attenuating optics, co-axial illumination, vision system, 3-axis linear stage and vibration module. By controlling vibration amplitude, entrance and exit diameters are controllable. Using vibrating objective lens, we can control taper angle when femtosecond laser hole drilling by moving focusing point. The larger amplitude of vibration we control, the smaller taper angle will be carried out.