• Title/Summary/Keyword: Displacements current

Search Result 112, Processing Time 0.025 seconds

Post earthquake performance monitoring of a typical highway overpass bridge

  • Iranmanesh, A.;Bassam, A.;Ansari, F.
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.495-505
    • /
    • 2009
  • Bridges form crucial links in the transportation network especially in high seismic risk regions. This research aims to provide a quantitative methodology for post-earthquake performance evaluation of the bridges. The experimental portion of the research involved shake table tests of a 4-span bridge which was subjected to progressively increasing amplitudes of seismic motions recorded from the Northridge earthquake. As part of this project, a high resolution long gauge fiber optic displacement sensor was developed for post-seismic evaluation of damage in the columns of the bridge. The nonlinear finite element model was developed using Opensees program to simulate the response of the bridge and the abutments to the seismic loads. The model was modified to predict the bent displacements of the bridge commensurate with the measured bent displacements obtained from experimental analysis results. Following seismic events, the tangential stiffness matrix of the whole structure is reduced due to reduction in structural strength. The nonlinear static push over analysis using current damaged stiffness matrix provides the longitudinal and transverse ultimate capacities of the bridge. Capacity loss in the transverse and longitudinal directions following the seismic events was correlated to the maximum displacements of the deck recorded during the events.

Vision-based multipoint measurement systems for structural in-plane and out-of-plane movements including twisting rotation

  • Lee, Jong-Han;Jung, Chi-Young;Choi, Eunsoo;Cheung, Jin-Hwan
    • Smart Structures and Systems
    • /
    • v.20 no.5
    • /
    • pp.563-572
    • /
    • 2017
  • The safety of structures is closely associated with the structural out-of-plane behavior. In particular, long and slender beam structures have been increasingly used in the design and construction. Therefore, an evaluation of the lateral and torsional behavior of a structure is important for the safety of the structure during construction as well as under service conditions. The current contact measurement method using displacement meters cannot measure independent movements directly and also requires caution when installing the displacement meters. Therefore, in this study, a vision-based system was used to measure the in-plane and out-of-plane displacements of a structure. The image processing algorithm was based on reference objects, including multiple targets in Lab color space. The captured targets were synchronized using a load indicator connected wirelessly to a data logger system in the server. A laboratory beam test was carried out to compare the displacements and rotation obtained from the proposed vision-based measurement system with those from the current measurement method using string potentiometers. The test results showed that the proposed vision-based measurement system could be applied successfully and easily to evaluating both the in-plane and out-of-plane movements of a beam including twisting rotation.

Improvement of Spectral Displacement-Based Damage State Criteria of Existing Low-Rise, Piloti-Type Buildings (기존 저층 필로티 건물의 스펙트럼 변위 기반 손상도 기준 개선)

  • Kim, Taewan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.5
    • /
    • pp.201-211
    • /
    • 2021
  • The Ministry of the Interior and Safety in Korea developed seismic fragility function for various building types in 2009. Damage states for most building types were determined by structural analyses of sample models and foreign references because actual cases damaged by earthquakes rarely exist in Korea. Low-rise, piloti-type buildings showed severe damage by brittle failure in columns due to insufficient stirrup details in the 2017 Pohang earthquake. Therefore, it is necessary to improve damage state criteria for piloti-type buildings by consulting actual outcomes from the earthquake. An analytical approach was conducted by developing analysis models of sample buildings reflecting insufficient stirrup details of columns to accomplish the purpose. The result showed that current spectral displacements of damage states for piloti-type buildings might be too large to estimate actual fragility. When the brittle behavior observed in the earthquake is reflected in the analysis model, one-fourth through one-sixth of current spectral displacements of damage states may be appropriate for existing low-rise, piloti-type buildings.

Performance Improvement of an Integrated-type Fully-Hydraulic Breaker by Sensitivity Analysis (일체형 순수유압식 브레이커의 민감도해석에 의한 성능 향상)

  • Choi, S.;Chang, H.W.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.6 no.1
    • /
    • pp.17-24
    • /
    • 2009
  • The performance improvement of a small-size integrated-type fully hydraulic breaker is studied in this paper. Mathematical modeling of the breaker is established and verified by experiment. Through sensitivity analysis using AMESim, the key design parameters are selected and nearly optimized to maximize the impact energy as well as to improve the dynamic characteristics such as the piston upper chamber pressure, piston and valve displacements. As a result, the impact energy, blows per minute(bpm) and output power are increased by 52.9%, 1%, and 55.6%, respectively compared with the current design. The dynamic characteristics of the piston upper chamber pressure, piston and valve displacements are also improved by the design change.

  • PDF

Backfill and subsoil interaction effects on seismic behavior of a cantilever wall

  • Cakir, Tufan
    • Geomechanics and Engineering
    • /
    • v.6 no.2
    • /
    • pp.117-138
    • /
    • 2014
  • The main focus of the current study is to evaluate the dynamic behavior of a cantilever retaining wall considering backfill and soil/foundation interaction effects. For this purpose, a three-dimensional finite element model (FEM) with viscous boundary is developed to investigate the seismic response of the cantilever wall. To demonstrate the validity of the FEM, analytical examinations are carried out by using modal analysis technique. The model verification is accomplished by comparing its predictions to results from analytical method with satisfactory agreement. The method is then employed to further investigate parametrically the effects of not only backfill but also soil/foundation interactions. By means of changing the soil properties, some comparisons are made on lateral displacements and stress responses. It is concluded that the lateral displacements and stresses in the wall are remarkably affected by backfill and subsoil interactions, and the dynamic behavior of the cantilever retaining wall is highly sensitive to mechanical properties of the soil material.

A simulation study on predicting the current collection performance in 400km/h on establishing the maximum speed test plan of the next Korean high speed train development project (차세대 고속철도의 최고속도 시험 계획 수립을 위한 집전 성능 예측 시뮬레이션)

  • Kwon, Sam-Young;Park, Chun-Soo;Cho, Yong-Hyeon;Lee, Ki-Won;Park, Young
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.428-432
    • /
    • 2008
  • The next Korean high speed train development project is started. In testing stage of this project, the 400km/h maximum speed test will be conducted. In Korean railway infrastructure conditions the 400km/h seems to be a critical speed especially in the aspect of the overhead contact lines. The current collection performance of the 400km/h which is predicted by dynamic interaction simulation are described in this paper. To discuss the permissible criteria of contact forces, displacements and percentage contact loss, the French 575km/h current collection conditions are simulated. Furthermore, review of the simulation results of the Korean 400km/h current collection conditions is conducted through comparison with that of the French 575km/h.

  • PDF

Effects of Hall current in a transversely isotropic magnetothermoelastic with and without energy dissipation due to normal force

  • Kumar, Rajneesh;Sharma, Nidhi;Lata, Parveen
    • Structural Engineering and Mechanics
    • /
    • v.57 no.1
    • /
    • pp.91-103
    • /
    • 2016
  • This investigation is concerned with the disturbances in a homogeneous transversely isotropic thermoelastic rotating medium with two temperature, in the presence of the combined effects of Hall currents and magnetic field due to normal force of ramp type. The formulation is applied to the thermoelasticity theories developed by Green-Naghdi Theories of Type-II and Type-III. Laplace and Fourier transform technique is applied to solve the problem. The analytical expressions of displacements, stress components, temperature change and current density components are obtained in the transformed domain. Numerical inversion technique has been applied to obtain the results in the physical domain. Numerically simulated results are depicted graphically to show the effects of Hall current and anisotropy on the resulting quantities. Some special cases are also deduced from the present investigation.

A Study on the Analysis and Corner Joint Design of Underground R.C Box Structure (지하의 철근콘크리트 박스구조물의 해석 및 우각부 설계에 관한 연구)

  • 오병환;채성태;신호상;김의성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.253-257
    • /
    • 1996
  • A basic assumption in the current design and analysis of reinforced concrete(RC) box structures, which are constructed by the open cut and fill method, is that the displacements and forces are uniform in the longitudinal direction of the structure. The solution may be therefore obtatined from the analysis of a unit wide strip along longitudinal axis. This strip is said to be in a plane strain condition, meaning that the out of plane deformations are vanished. The current design of box structure is carried out by the result of planar frame model for the sake of simplicity. The purpose of this study is to show more rational design method of box culverts considering a rigid zone of corner joints. The current analysis of box structures will be compared with the plane strain analysis as well as 3-d shell model. Reinforcement quantity is also determined to resist the tensile force in corner joints of box structures using strut-tie model which has been developed through the elastic analysis.

  • PDF

Dielectric Relaxation Properties of Organic Ultra Thin Films for Nanotechnology (나노기술을 위한 유기초박막의 유전완화특성)

  • Cho, Su-Young;Song, Jin-Won;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05c
    • /
    • pp.9-13
    • /
    • 2004
  • In this paper, evaluation of physical properties about dielectric relaxation phenomena by the detection of the surface pressures and displacements current on the monolayer films of phospolipid monomolecular DLPC, DMPC using pressure stimulus. As a result, the changed surface pressure, displacement current and the transition forms of dipole moment of phospolipid monomolecular in area per molecular by pressure stimulus were conformed well. It was known that the monolayers by linear relationship for decision of dielectric relaxation time between compressure speed and molecule area By according to the linear relationship relation get that frictional constant, DLPC was $1.89{\times}10^{-19}$[Js] and DMPC was $0.722{\times}10^{-19}$[Js]. It is found that the phospolipid monolayer of dielectric relaxation takes a little time and depend on the molecular area.

  • PDF

Displacement Current Characteristics of DMPC Lipid Monolayer (DMPC 인지질 단분자막의 변위전류 특성)

  • Choi, Yong-Sung;Sang, Jin-Won;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.12-13
    • /
    • 2006
  • The physical properties of DMPC monolayer were made for dielectric relaxation phenomena by the detection of the surface pressures and displacements current. The current was measured after the electric bias across the manufactured MIM device. It is found that the phospolipid monolayer of dielectric relaxation takes a little time and depend on the molecular area. When electric bias is applied across the manufactured MIM device by the deposition condition of phospolipid mono-layer, it wasn't breakdown when the higher electric field to impress by increase of deposition layers.

  • PDF