• Title/Summary/Keyword: Displacements current

Search Result 112, Processing Time 0.023 seconds

Digital Twin Model of a Beam Structure Using Strain Measurement Data (보 구조물에서 변형률 계측 데이터를 활용한 디지털트윈 모델 구현)

  • Han, Man-Seok;Shin, Soo-Bong;Moon, Tae-Uk;Kim, Da-Un;Lee, Jong-Han
    • Journal of KIBIM
    • /
    • v.9 no.3
    • /
    • pp.1-7
    • /
    • 2019
  • Digital twin technology has been actively developed to monitor and assess the current state of actual structures. The digital twin changes the traditional observation method performed in the field to the real-time observation and detection system using virtual online model. Thus, this study designed a digital twin model for a beam and examined the feasibility of the digital twin for bridges. To reflect the current state of the bridge, model updating was performed according to the field test data to construct an analysis model. Based on the constructed bridge analysis model, the relationship between strain and displacement was used to represent a virtual model that behaves in the same way as the actual structure. The strain and displacement relationship was expressed as a matrix derived using an approximate analytical theory. Then, displacements can be obtained using the measured data obtained from strain sensors installed on the bridge. The coordinates of the obtained displacements are used to construct a virtual digital model for the bridge. For verification, a beam was fabricated and tested to evaluate the digital twin model constructed in this study. The displacements obtained from the strain and displacement relationship agrees well with the actual displacements of the beam. In addition, the displacements obtained from the virtual model was visualized at the locations of the strain sensor.

A Study on Displacement Current Characteristics of DMPC Monolayer (II) (DMPC 인지질 단분자막의 변위전류 특성 연구 (II))

  • Song, Jin-Won;Lee, Kyung-Sup;Choi, Yong-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.343-348
    • /
    • 2007
  • The physical properties of DMPC monolayer were made for dielectric relaxation phenomena by the detection of the surface pressures and displacements current. Lipid thin films were deposited by accumulation and the current was measured after the electric bias across the manufactured MIM device. It is found that the phospolipid monolayer of dielectric relaxation takes a little time and depend on the molecular area. When electric bias is applied across the manufactured MIM device by the deposition condition of phospolipid mono-layer, it wasn't breakdown when the higher electric field to impress by increase of deposition layers.

Displacement-Sensorless Control of Magnetic Bearing System using Current and Magnetic Flux Feedback (전류와 자속의 궤환에 의한 자기베어링 시스템의 센서가 없는 변위 제어)

  • Lee, Jun-Ho;Gang, Min-Su;Jeong, Yong-Un;Lee, Jeong-Seok;Lee, Gi-Seo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.7
    • /
    • pp.339-345
    • /
    • 2000
  • This paper deals with the displacement estimation of magnetically suspended simple 1 DOF(degree of freedom) system without the displacement sensor. Inherently electro-magnet for control has two natural feedback loops. One is the transfer function which represents the dependance of the amount of the magnetic flux on the gap displace-ments. The other is the transfer function expressing the properties that the back electromotive force is derived from the time derivative of the magnetic flux. Through these two feedback loops, information about the gap length can be represented by the magnetic flux and the coil current. This means that the gap length can be detected from these two states variables of the electromagnet without a displacements sensor(self-sensing). The displacement can be estimated with the magnetic flux subtracted by the coil current. In this paper we use a balance beam in order to deal with the displacement sensorless estimation of the magnetic bearing system. For the stable estimation of the gap displacements by using the method of self-sensing simple PD controller is used. We first show the mathematical model of the balance beam, and then we show the effectiveness of the current and flux feedback for making stable estimation of the gap displacements for the balance beam. Simulation results show the effectiveness of the current and flux feedback for good estimation of the displacement without using displacement sensor.

  • PDF

Evaluation Technique for Ratio Error and Phase Displacement of Current Transformer Comparator (전류변성기 비교기의 비오차 및 위상오차 평가기술)

  • Kim, Yoon-Hyoung;Han, Sang-Gil;Jung, Jae-Kap;Han, Sang-Ok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.4
    • /
    • pp.437-443
    • /
    • 2008
  • We have developed an evaluation technique for both ratio error and phase displacement of current transformer (CT) comparator by using the precise standard capacitors and resistors. By applying this technique to equivalent circuit of CT comparator evaluation system, we can obtain the calculated and measured ratio errors (or phase displacements) in the CT comparator. Thus we can evaluate ratio errors and phase displacement of CT comparator by comparing the calculated and measured ratio errors (or phase displacements). The method was applied to CT comparator under test with the ratio errors and phase displacement ranges of $0{\sim}{\pm}10%$ and $0{\sim}{\pm}7.5$ crad, respectively. Finally we have compared the ratio error and phase displacement of the CT comparator obtained in this method with specifications of two companies.

An analytical technique for estimation of seismic displacements in reinforced slopes based on horizontal slices method (HSM)

  • Ghanbari, Ali;Khalilpasha, Abbas;Sabermahani, Mohsen;Heydari, Babak
    • Geomechanics and Engineering
    • /
    • v.5 no.2
    • /
    • pp.143-164
    • /
    • 2013
  • Calculation of seismic displacements in reinforced slopes plays a crucial role in appropriate design of these structures however current analytical methods result indifferent values for permanent displacements of the slope. In this paper, based on limit equilibrium and using the horizontal slices method, a new formulation has been proposed for estimating the seismic displacements of a reinforced slope under earthquake records. In this method, failure wedge is divided into a number of horizontal slices. Assuming linear variations for tensile forces of reinforcements along the height of the slope, the coefficient of yield acceleration has been estimated. The simplicity of calculations and taking into account the frequency content of input triggers are among the advantages of the present formulation. Comparison of the results shows that the yield acceleration calculated by the suggested method is very close to the values resulted from other techniques. On the other hand, while there is a significant difference between permanent displacements, the values obtained from the suggested method place somehow between those calculated by the other techniques.

Applicability of Similitude Law for 1-g shaking table tests (1-g 진동대 모형시험에서의 상사법칙 적용성 평가)

  • 황재익;김성렬;이용재;김명모
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.75-82
    • /
    • 2002
  • Shaking table model tests are performed to reproduce the dynamic behavior of a gravity quay wall and a pile-supported wharf damaged by Kobe earthquake in 1995. Using the scaling relations suggested by Scott and Iai(1989), the results of the model tests are compared with field measurements as well as with those of the model tests previously executed. The displacements of the gravity quay wall predicted by the current model tests are, at most, one third of the measured displacements, while the displacements of the model pile-supported wharf are about two thirds of the measured values. One possibility for the discrepancy is speculated to be the use of too big scaling factor, i.e., too small size of model.

  • PDF

A Study on Displacement Current Characteristics of DLPC Monolayer (I) (DLPC 인지질 단분자막의 변위전류 특성 연구 (I))

  • Song, Jin-Won;Lee, Kyung-Sup;Choi, Yong-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.117-122
    • /
    • 2007
  • LB method is one of the most interesting technique to arrange certain molecular groups at precise position relative to others. Also, the LB deposition technique can fabricate extremely thin organic films with a high degree of control over their thickness and molecular architecture. In this way, new thin film materials can be built up at the molecular level, and the relationship between these artificial structures and the properties of materials can be explored. In this paper, evaluation of physical properties was made for dielectric relaxation phenomena by the detection of the surface pressures and displacements current on the monolayer films of phospolipid monomolecular DLPC. Lipid thin films were manufacture by detecting deposition for the accumulation and the current was measured after the electric bias was applied across the manufactured MIM device. It is found that the phospolipid monolayer of dielectric relaxation takes a little time and depend on the molecular area. When electric bias is applied across the manufactured MIM device by the deposition condition of phospolipid mono-layer, it wasn't breakdown when the higher electric field to impress by increase of deposition layers.

A Study on Displacement Current DMPC Monolayer (DMPC 단분자막의 변위전류 특성 연구)

  • Choi, Yong-Sung;Cho, Jang-Hoon;Song, Jin-Won;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.168-169
    • /
    • 2006
  • The physical properties of DMPC monolayer were made for dielectric relaxation phenomena by the detection of the surface pressures and displacements current. The phospolipid monolayer of dielectric relaxation takes a little time and depend on the molecular area.

  • PDF

Design and application of a novel eddy current damper for a high-rise sightseeing tower

  • Kaifang Liu;Yanhui Liu;Chia-Ming Chang;Ping Tan
    • Structural Engineering and Mechanics
    • /
    • v.86 no.4
    • /
    • pp.573-587
    • /
    • 2023
  • A conventional tuned mass damper (TMD) provides a passive control option to suppress the structures' wind- or earthquake-induced vibrations. However, excessive displacements of the TMD raise concerns in the practical implementation. Therefore, this study proposes a novel TMD designed for and deployed on a high-rise sightseeing tower. The device consists of an integrated two-way slide rail mount and an eddy current damper (ECD) with a stroke control mechanism. This stroke control mechanism allows the damping coefficient to automatically increase when the stroke reaches a predetermined value, preventing excessive damper displacements during large earthquakes. The corresponding two-stage damping parameters are designed with a variable-thickness copper plate to enable the TMD stroke within a specified range. Thus, this study discusses the detailed design schemes of the device components in TMD. The designed two-stage damping parameters are also numerically verified, and the structural responses with/without the TMD are compared. As seen in the results, the proposed TMD yields effective control authority to limit the acceleration response within a comfort level. In addition, this TMD resolves the spatial availability for the damper movement in high-rise buildings by the controllable damping mechanism.

Vibration Response of a Human Carpal Muscle (인체 수관절 근육의 진동 응답)

  • Chun, Han-Yong;Kim, Jin-Oh;Park, Kwang-Hun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.1
    • /
    • pp.31-40
    • /
    • 2011
  • This paper examines the dynamic characteristics of a human carpal muscle through theoretical analysis and experiment. The carpal muscle was modeled as a 1-DOF vibration system and vibration response due to a ramp function force was calculated. The electromyogram signal corresponding to the muscle excitation force was measured, and the excitation force function of an envelope curve from the electromyogram signal was extracted. The ramp input function of electrical stimulation to the carpal muscle was applied by using a device for functional electrical stimulation, and the angular displacements corresponding to steady state response were measured. Theoretical calculations of the vibration response displacements were compared with the experimental results of the angular displacements, and have shown a good agreement with the result that is linearly proportional to the excitation force magnitude. As a result, the relationship between the input current of the electrical stimulation and the excitation force magnitude was inferred. The result was shown that it can be applied to develop rehabilitation training devices.