• Title/Summary/Keyword: Displacement-based stress assessment

Search Result 34, Processing Time 0.027 seconds

Multivariate adaptive regression splines model for reliability assessment of serviceability limit state of twin caverns

  • Zhang, Wengang;Goh, Anthony T.C.
    • Geomechanics and Engineering
    • /
    • v.7 no.4
    • /
    • pp.431-458
    • /
    • 2014
  • Construction of a new cavern close to an existing cavern will result in a modification of the state of stresses in a zone around the existing cavern as interaction between the twin caverns takes place. Extensive plane strain finite difference analyses were carried out to examine the deformations induced by excavation of underground twin caverns. From the numerical results, a fairly simple nonparametric regression algorithm known as multivariate adaptive regression splines (MARS) has been used to relate the maximum key point displacement and the percent strain to various parameters including the rock quality, the cavern geometry and the in situ stress. Probabilistic assessments on the serviceability limit state of twin caverns can be performed using the First-order reliability spreadsheet method (FORM) based on the built MARS model. Parametric studies indicate that the probability of failure $P_f$ increases as the coefficient of variation of Q increases, and $P_f$ decreases with the widening of the pillar.

The Analysis of Circumference Through-Wall Cracked Pipe Considering Weld Characteristic (용접부 강도불균질을 고려한 원주방향관통균열 배관의 파괴역학 해석법)

  • Park, Bo-Gyu;Oh, Chang-Kyun;Kim, Yun-Jae;Kim, Young-Jin;Kim, Jong-Sung;Jin, Tae-Eun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.31-36
    • /
    • 2004
  • Defective components of interest include not only homogeneous components, but also components with weldments where tensile properties vary across the weldment. Noting that the region near the weldment is the most vulnerable place for crack initiation and subsequent growth, defect assessment methods for homogeneous structure. Moreover, weldment width and crack location also affects the deformation and fracture behavior of the welded joints. These weld characteristics can evaluate using plastic limit load. So in this paper, evaluate plastic limit load both full circumference part-throughwall cracked pipes and circumference through-wall cracked pipes considering weld characteristics. And using evaluate results, proposed J-integral and crack opening displacement(COD) estimate method based on reference stress method.

  • PDF

Pseudo seismic and static stability analysis of the Torul Dam

  • Karabulut, Muhammet;Genis, Melih
    • Geomechanics and Engineering
    • /
    • v.17 no.2
    • /
    • pp.207-214
    • /
    • 2019
  • Dams have a great importance on energy and irrigation. Dams must be evaluated statically and dynamically even after construction. For this purpose, Torul dam built between years 2000 and 2007 Harsit River in Gümüşhane province, Turkey, is selected as an application. The Torul dam has 137 m height and 322 GWh annual energy production capacity. Torul dam is a kind of concrete face rock fill dam (CFRD). In this study, static and pseudo seismic stability of Torul dam was investigated using finite element method. Torul dam model is constituted by numerical stress analysis named Phase2 which is based on finite element method. The dam was examined under 11 different water filling levels. Thirteenth stage of the numerical model is corresponding full reservoir condition which water filled up under crest line. Besides, pseudo static coefficients for dynamic condition applied to the dam in fourteenth stage of the model. Stability assessment of the Torul dam has been discussed according to the displacement throughout the dam body. For static and pseudo seismic cases, the displacements in the dam body have been compared. The total displacements of the dam according to its the empty state increase dramatically at the height of the water level of about 70 m and above. Compared to the pseudo-seismic analysis, the displacement of dam at the full reservoir condition is approximately two times as high as static analysis.

Reliability-based assessment of high-speed railway subgrade defect

  • Feng, Qingsong;Sun, Kui;Chen, Hua-peng
    • Structural Engineering and Mechanics
    • /
    • v.77 no.2
    • /
    • pp.231-243
    • /
    • 2021
  • In this paper, a dynamic response mapping model of the wheel-rail system is established by using the support vector regression (SVR) method, and the hierarchical safety thresholds of the subgrade void are proposed based on the reliability theory. Firstly, the vehicle-track coupling dynamic model considering the subgrade void is constructed. Secondly, the subgrade void area, the subgrade compaction index K30 and the fastener stiffness are selected as random variables, and the mapping model between these three random parameters and the dynamic response of the wheel-rail system is built by using the orthogonal test and the SVR. The sensitivity analysis is carried out by the range analysis method. Finally, the hierarchical safety thresholds for the subgrade void are proposed. The results show that the subgrade void has the most significant influence on the carbody vertical acceleration, the rail vertical displacement, the vertical displacement and the slab tensile stress. From the range analysis, the subgrade void area has the largest effect on the dynamic response of the wheel-rail system, followed by the fastener stiffness and the subgrade compaction index K30. The recommended safety thresholds for the subgrade void of level I, II and III are 4.01㎡, 6.81㎡ and 9.79㎡, respectively.

A NEW FEEDBACK TECHNIQUE FOR TUNNEL SAFETY BY USING MEASURED DISPLACEMENTS DURING TUNNEL EXCAVATION

  • Sihyun PARK;Yongsuk SHIN;Sungkun PARK
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.432-439
    • /
    • 2009
  • This research project was carried out to develop the technique to assess quantitatively and rapidly the stability of a tunnel by using the measured displacement at the tunnel construction site under excavation. To achieve this purpose, a critical strain concept was introduced and applied to an assessment of a tunnel under construction. The new technique calculates numerically the strains of the surrounding ground by using the measured displacements during excavation. A numerical practical system was developed based on the proposed analysis technique in this study. The feasibility of the developed analysis module was verified by incorporating the analysis results obtained by commercial programs into the developed analysis module. To verify the feasibility of the developed analysis module, analysis results of models both elastic and elasto-plastic grounds were investigated for the circular tunnel design. Then the measured displacements obtained in the field are utilized practically to assess the safety of tunnels using critical strain concept. It was verified that stress conditions of in-situ ground and ground material properties were accurately assessed by inputting the calculated displacement obtained by commercial program into this module for the elastic ground. However for the elasto-plastic ground, analysis module can reproduce the initial conditions more closely for the soft rock ground than for the weathered soil ground. The stability of tunnels evaluated with two types of strains, that is, the strains obtained by dividing the crown displacement into a tunnel size and the strains obtained by using the analysis module. From this study, it is confirmed that the critical strain concept can be fully adopted within the engineering judgment in practical tunnel problems and the developed module can be used as a reasonable tool for the assessment of the tunnel stability in the field.

  • PDF

Assessment of the Anchor Head System Embedded in the Ground Surface (지표면에 근입한 앵커두부처리 시스템의 적용성 평가)

  • Min, Kyoung-Nam;Bae, Woo-Seok;Ahn, Kwang-Kuk;Jeong, Ku-Sic
    • The Journal of Engineering Geology
    • /
    • v.22 no.1
    • /
    • pp.49-58
    • /
    • 2012
  • Anchor heads a recommonly exposed to surface weathering processes that cause physical damage by vibration and external forces. This study presents a new method of anchor-head installation that uses near-surface embedding based on analyses of concrete block failure. ABAQUS 3D numerical modeling performed to compare this method with the standard technique and to analyze the distribution of displacement and the stress pattern. In addition, application of the method to a real-world case was tested by in-situ measurements. The results show a maximum vertical stress of 9.73 MPa and vertical displacement of 1.34 mm. Field tests indicated that displacement of a concrete block was 3 to 4 times greater than that of an embedded bearing plate.

Crack Opening Area Assessment of Circumferential Though Wall Crack in a Pipe Subjected to Tension and Bending (인장과 굽힘을 받는 배관의 원주방향 관통균열 개구면적 평가)

  • Kim, Sang-Cheol;Kim, Maan-Won
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.5
    • /
    • pp.61-66
    • /
    • 2008
  • It is important to calculate the exact crack opening area in the cracked pipe subjected to axial force and bending moment. Among many solutions for obtaining the crack opening displacement, Paris-Tada's expression, which is derived from energy method, is open used in fracture analysis for piping crack problems because of its simplicity. But Paris-Tada's equation has conservativeness when radius over thickness ratio(R/t) is ten or less, for it is based on the stress intensity factor solution having a compliance function derived from a simple shell theory. In this paper we derived a new expression using a different stress intensity factor solution which is able to consider the variation of compliance through wall thickness in a cracked pipe. Conservativeness of both equations was examined and compared to finite element analysis results. Conservativeness of the new equation is decreased when R/t > 10 and increased slightly when R/t < 10 compared with Paris-Tada's. But Both equations were highly conservative when R/t < 10 compared with finite element analysis results.

Application of fiber element in the assessment of the cyclic loading behavior of RC columns

  • Sadjadi, R.;Kianoush, M.R.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.3
    • /
    • pp.301-317
    • /
    • 2010
  • This paper studies the reliability of an analytical tool for predicting the lateral load-deformation response of RC columns while subjected to lateral cyclic displacements and axial load. The analytical tool in this study is based on a fiber element model implemented into the program DRAIN-2DX (fiber element). The response of RC column under cyclic displacement is defined by the behavior of concrete, and reinforcing steel under general reversed-cyclic loading. A tri-linear stress-strain relationship for the cyclic behavior of steel is proposed and the improvement in the analytical results is studied. This study only considers the behavior of columns with flexural dominant mode of failure. It is concluded that with the implementation of appropriate constitutive material models, the described analytical tools can predict the response of the columns with reasonable accuracy when compared to experimental data.

Development and Assessment for Resilient Modulus Prediction Model of Railway Trackbeds Based on Modulus Reduction Curve (탄성계수 감소곡선에 근거한 철도노반의 회복탄성계수 모델 개발 및 평가)

  • Park, Chul-Soo;Hwang, Seon-Keun;Choi, Chan-Yong;Mok, Young-Jin
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.805-814
    • /
    • 2008
  • This study focused on the resilient modulus prediction model, which is the functions of mean effective principal stress and axial strain, for three types of railroad trackbed materials such as crushed stone, weathered soil, and crushed-rock soil mixture. The model is composed with the maximum Young's modulus and nonlinear values for higher strain in parallel with dynamic shear modulus. The maximum values is modeled by model parameters, $A_E$ and the power of mean effective principal stress, $n_E$. The nonlinear portion is represented by modified hyperbolic model, with the model parameters of reference strain, ${\varepsilon}_r$ and curvature coefficient, a. To assess the performance of the prediction models proposed herein, the elastic response of a test trackbed near PyeongTaek, Korea was evaluated using a 3-D nonlinear elastic computer program (GEOTRACK) and compared with measured elastic vertical displacement during the passages of freight and passenger trains. The material types of sub-ballasts are crushed stone and weathered granite soil, respectively. The calculated vertical displacements within the sub-ballasts are within the order of 0.6mm, and agree well with measured values with the reasonable margin. The prediction models are thus concluded to work properly in the preliminary investigation.

  • PDF

Yield penetration in seismically loaded anchorages: effects on member deformation capacity

  • Tastani, S.P.;Pantazopoulou, S.J.
    • Earthquakes and Structures
    • /
    • v.5 no.5
    • /
    • pp.527-552
    • /
    • 2013
  • Development of flexural yielding and large rotation ductilities in the plastic hinge zones of frame members is synonymous with the spread of bar reinforcement yielding into the supporting anchorage. Yield penetration where it occurs, destroys interfacial bond between bar and concrete and reduces the strain development capacity of the reinforcement. This affects the plastic rotation capacity of the member by increasing the contribution of bar pullout. A side effect is increased strains in the compression zone within the plastic hinge region, which may be critical in displacement-based detailing procedures that are linked to concrete strains (e.g. in structural walls). To quantify the effects of yield penetration from first principles, closed form solutions of the field equations of bond over the anchorage are derived, considering bond plastification, cover debonding after bar yielding and spread of inelasticity in the anchorage. Strain development capacity is shown to be a totally different entity from stress development capacity and, in the framework of performance based design, bar slip and the length of debonding are calculated as functions of the bar strain at the loaded-end, to be used in calculations of pullout rotation at monolithic member connections. Analytical results are explored parametrically to lead to design charts for practical use of the paper's findings but also to identify the implications of the phenomena studied on the detailing requirements in the plastic hinge regions of flexural members including post-earthquake retrofits.