• Title/Summary/Keyword: Displacement function

Search Result 1,015, Processing Time 0.026 seconds

Designing fuzzy systems for optimal parameters of TMDs to reduce seismic response of tall buildings

  • Ramezani, Meysam;Bathaei, Akbar;Zahrai, Seyed Mehdi
    • Smart Structures and Systems
    • /
    • v.20 no.1
    • /
    • pp.61-74
    • /
    • 2017
  • One of the most reliable and simplest tools for structural vibration control in civil engineering is Tuned Mass Damper, TMD. Provided that the frequency and damping parameters of these dampers are tuned appropriately, they can reduce the vibrations of the structure through their generated inertia forces, as they vibrate continuously. To achieve the optimal parameters of TMD, many different methods have been provided so far. In old approaches, some formulas have been offered based on simplifying models and their applied loadings while novel procedures need to model structures completely in order to obtain TMD parameters. In this paper, with regard to the nonlinear decision-making of fuzzy systems and their enough ability to cope with different unreliability, a method is proposed. Furthermore, by taking advantage of both old and new methods a fuzzy system is designed to be operational and reduce uncertainties related to models and applied loads. To design fuzzy system, it is required to gain data on structures and optimum parameters of TMDs corresponding to these structures. This information is obtained through modeling MDOF systems with various numbers of stories subjected to far and near field earthquakes. The design of the fuzzy systems is performed by three methods: look-up table, the data space grid-partitioning, and clustering. After that, rule weights of Mamdani fuzzy system using the look-up table are optimized through genetic algorithm and rule weights of Sugeno fuzzy system designed based on grid-partitioning methods and clustering data are optimized through ANFIS (Adaptive Neuro-Fuzzy Inference System). By comparing these methods, it is observed that the fuzzy system technique based on data clustering has an efficient function to predict the optimal parameters of TMDs. In this method, average of errors in estimating frequency and damping ratio is close to zero. Also, standard deviation of frequency errors and damping ratio errors decrease by 78% and 4.1% respectively in comparison with the look-up table method. While, this reductions compared to the grid partitioning method are 2.2% and 1.8% respectively. In this research, TMD parameters are estimated for a 15-degree of freedom structure based on designed fuzzy system and are compared to parameters obtained from the genetic algorithm and empirical relations. The progress up to 1.9% and 2% under far-field earthquakes and 0.4% and 2.2% under near-field earthquakes is obtained in decreasing respectively roof maximum displacement and its RMS ratio through fuzzy system method compared to those obtained by empirical relations.

Behavior of Columns Due to Variation of Performance Influencing Factors Based on Performance Based Design (성능기반설계에 기초한 성능영향인자 변화에 따른 기둥의 거동분석)

  • Yun, Sung-Hwan;Choi, Min-Choul;Kang, Yoon-Sig;Park, Tae-Hyo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.489-498
    • /
    • 2010
  • The performance evaluation of reinforcement concrete structure is carried out as a function of the following performance influencing factors: (1) the strength of concrete, (2) longitudinal reinforcement, (3) transverse reinforcement, (4) aspect ratio, and (5) axial force. With various values of the five parameters, eigenvalue analysis and non-linear static analysis were performed to investigate the structural yield displacement, yield basis shear force, and static performance of ductility ratio. In addition, the performance evaluation is carried out according to the modified capacity spectrum method (FEMA-440) using the results of non-linear static analysis, and the effect of each parameter on performance point is analyzed. Based on the result of eigenvalue analysis and non-linear static analysis indicates, that the natural period and the ductility ratio are affected more by the structural properties than the material properties. In case of the analysis of the criterion of performance points, the effect of section shape is one of the important factors together with natural period and ductility ratio.

Seismic Fragility Analysis of RC Bridge Piers in Terms of Seismic Ductility (철근콘크리트 교각의 연성 능력에 따른 지진취약도)

  • Chung, Young-Soo;Park, Chang-Young;Park, Ji-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.91-102
    • /
    • 2007
  • Through lessons in recent earthquakes, the bridge engineering community recognizes the need for new seismic design methodologies based on the inelastic structural performance of RC bridge structures. This study represents results of performance-based fragility analysis of reinforced concrete (RC) bridge. Monte carlo simulation is performed to study nonlinear dynamic responses of RC bridge. Two-parameter log-normal distribution function is used to represent the fragility curves. These two-parameters, referred to as fragility parameters, are estimated by the traditional maximum likelihood procedure, which is treated each event of RC bridge pier damage as a realization of Bernoulli experiment. In order to formulate the fragility curves, five different damage states are described by two practical factors: the displacement and curvature ductility, which are mostly influencing on the seismic behavior of RC bridge piers. Five damage states are quantitatively assessed in terms of these seismic ductilities on the basis of numerous experimental results of RC bridge piers. Thereby, the performance-based fragility curves of RC bridge pier are provided in this paper. This approach can be used in constructing the fragility curves of various bridge structures and be applied to construct the seismic hazard map.

Examination of Applicability of Liquefaction Potential Index to Seismic Vulnerability Evaluation of the Korean River Levees (액상화 가능 지수의 국내 하천제방 지진취약도 평가 적용성 검토)

  • Ha, Iksoo;Moon, Injong;Yun, Jungwon;Han, Jintae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.4
    • /
    • pp.31-40
    • /
    • 2017
  • In this study, a simple method to evaluate the seismic vulnerability of river levees was examined considering the structural characteristic of river levee, that is long, and the functional characteristic of river levee that performs temporary function against flood but is a permanent structure in the ordinary way. Considering the fact that one of the main failure modes of the levee during the earthquake are the settlement due to the strength reduction of the ground caused by the increase of the excess pore pressure in the levee body and foundation and the settlement due to liquefaction, the 2-dimensional section of the levee was regarded as the 1-dimensional section and the liquefaction potential index (LPI) for the regarded section was estimated. The estimated LPI was correlated with the seismic vulnerability of river levees. The relationship between the displacement of the levee crest caused by the earthquake and the seismic vulnerability of the levees was obtained from the results of previous researches and the correlation between the displacements of the levee crest computed by 2-dimensional dynamic coupled analyses and LPIs based on the results of 1-dimensional seismic response analyses was investigated. In connection with this correlation, as a result of examination of the correlation between LPI and the seismic vulnerability of the levee, it was concluded that the method for evaluation of the seismic vulnerability of the Korean river levee using LPI is applicable.

Factors affecting orthodontically induced root resorption of maxillary central incisors in the Korean population (한국인에서의 교정치료로 인한 상악 중절치 치근 흡수에 영향을 미치는 요소)

  • Chung, Dong-Hwa;Park, Young-Guk;Kim, Kwang-Won;Cha, Kyung-Suk
    • The korean journal of orthodontics
    • /
    • v.41 no.3
    • /
    • pp.174-183
    • /
    • 2011
  • Objective: Orthodontically induced root resorption (OIRR) involves partial loss of cementum and dentin of teeth caused by routine orthodontic treatment. It decreases root length and influences the function of affected teeth. In this study, the treatment and patient factors causing apical root resorption in Koreans were determined. The observed factors were extraction, gender, age, displacement of root apex, total treatment period, total teeth length, and shape of the root. Methods: The records of 137 patients treated with full, fixed edgewise appliances were obtained from the Department of Orthodontics, Dankook University Dental Hospital, from November 2007 to December 2008. Periapical radiographs of the maxillary central incisors and cephalometric radiographs of each patient were used to assess apical root resorption and type of tooth movement. Results: The mean amount of resorption was $1.62{\pm}1.58mm$. The amount of resorption in the extraction and non-extraction groups was $2.10{\pm}1.64mm$ and $1.18{\pm}1.39mm$, respectively. The amount of root resorption increased with the total tooth length. Severe root resorption (> 4 mm) was related to abnormal root shape (blunt, pointed, or eroded). Conclusions: The variables significantly related to OIRR were extraction, initial tooth length, and root shape.

Comparison of the outcomes of three-dimensional finite element analysis under arbitrary and realistic occlusal loading conditions in mandibular posterior region (하악 구치부에서 임의로 부여된 교합과 실제 교합의 삼차원 유한요소해석결과의 비교)

  • Lee, Wonsup;Alom, Ghaith;Kim, Myung-Soo;Park, Young-Seok;Lim, Young-Jun;Kim, Myung-Joo;Kwon, Ho-Beom
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.2
    • /
    • pp.112-120
    • /
    • 2020
  • Purpose: The purpose of this study was to compare the biomechanical outcome in the mandibular posterior region between two different loading conditions by finite element analysis. Materials and Methods: The mandibular posterior teeth model and the implant model were generated for the study. And 2 different types of loading conditions were provided: Arbitrary occlusion and natural occlusion obtained from the digital occlusal analyzer, Accura (Accura, Dmetec Co. Ltd., Seoul, Korea). Total load of 100 N was evenly distributed over arbitrary occlusion points, and 100 N load was differentially distributed over natural occlusion points according to Accura data. The biomechanical outcome was evaluated by the finite element analysis software. Results: The result of finite element analysis showed considerable difference in both von Mises stress pattern and displacement under different loading conditions. Conclusion: In finite element analysis, it is recommended to simulate a realistic occlusal loading pattern that is based on accurate measurement.

Seismic Behavior of Bridges Considering Ground Motion Spatial Variation (공간적으로 변화하는 입력지진으로 인한 교량의 지진거동특성)

  • Bae, Byung Ho;Choi, Kwang Kyu;Kang, Seung Woo;Song, Si Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.759-768
    • /
    • 2015
  • The ground motions of large dimensional structures such as long span bridges at different stations during an earthquake, are inevitably different, which is known as the ground motion spatial variation effect. There are many causes that may result in the spatial variability in seismic ground motion, e.g., the wave passage effect due to the different arrival times of waves at different locations; the loss of coherency due to seismic waves scattering in the heterogeneous medium of the ground; the site amplification effect owing to different local soil properties. In previous researches, the site amplification effects have not been considered or considered by a single-layered soil model only. In this study, however, the ground motion amplification and filtering effects are evaluated by multi-layered soil model. Spatially varying ground motion at the sites with different number of layers, depths, and soil characteristics are generated and the variation characteristics of ground motion time histories according to the correlation of coherency loss function and soil conditions are evaluated. For the bridge system composed of two unit bridges, seismic behavior characteristics are analyzed using the generated seismic waves as input ground motion. Especially, relative displacement due to coherency loss and site effect which can cause the unseating and pounding between girders are evaluated. As a result, considering the soil conditions of each site are always important and should not be neglected for an accurate structural response analysis.

Non-Dimensional Analysis of a Two-Dimensional Beam Using Linear Stiffness Matrix in Absolute Nodal Coordinate Formulation (절대절점좌표계에서 선형 강성행렬을 활용한 2차원 보의 무차원 해석)

  • Kim, Kun Woo;Lee, Jae Wook;Jang, Jin Seok;Oh, Joo Young;Kang, Ji Heon;Kim, Hyung Ryul;Yoo, Wan Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.1
    • /
    • pp.31-40
    • /
    • 2017
  • Absolute nodal coordinate formulation was developed in the mid-1990s, and is used in the flexible dynamic analysis. In the process of deriving the equation of motion, if the order of polynomial referring to the displacement field increases, then the degrees of freedom increase, as well as the analysis time increases. Therefore, in this study, the primary objective was to reduce the analysis time by transforming the dimensional equation of motion to a non-dimensional equation of motion. After the shape function was rearranged to be non-dimensional and the nodal coordinate was rearranged to be in length dimension, the non-dimensional mass matrix, stiffness matrix, and conservative force was derived from the non-dimensional variables. The verification and efficiency of this non-dimensional equation of motion was performed using two examples; cantilever beam which has the exact solution about static deflection and flexible pendulum.

Estimation of Orthotropic Flexural Rigidities Considering the Deformed Shape for a Plate Stiffened with Rectangular Ribs (변형 형상을 고려한 평강 리브 보강판의 직교이방성 휨강성 산정)

  • Chu, Seok Beom;Im, Kwan Hyuk
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.621-632
    • /
    • 2007
  • The purpose of this study was the estimation and formulation of orthotropic flexural rigidities considering the deformed shape for a plate stiffened with rectangular ribs. Analytical results of methods modifying the flexural rigidity of the x-direction, the y-direction or both directions were compared at the center, the x-directional quarter point and the y-directional quarter point of stiffened plates loaded at the center. The composite method modifying the flexural rigidity of both directions improves the accuracy compared with the other methods. Moreover, the ratio of modified coefficients for each directional rigidity can be expressed as a function corresponding to each dimension of stiffened plates. The application of modified coefficient functions to various types of stiffened plates with different boundary conditions, aspect ratios and rib arrangement shows that the increment of the error ratio is small compared with examples of this study and the application of proposed functions shows more accurate results than previous methods modifying the flexural rigidity. Therefore, by using the modified coefficient functions proposed in this study, the orthotropic plate analysis of plates stiffened with rectangular ribs can easily achieve more accurate displacement results.

Early Surgical Stabilization of Ribs for Severe Multiple Rib Fractures (중증 다발성 늑골골절에 대한 조기 수술적 늑골고정술)

  • Hwang, Jung-Joo;Kim, Young-Jin;Ryu, Han-Young;Cho, Hyun-Min
    • Journal of Trauma and Injury
    • /
    • v.24 no.1
    • /
    • pp.12-17
    • /
    • 2011
  • Purpose: A rib fracture secondary to blunt thoracic trauma continues to be an important injury with significant complications. Unfortunately, there are no definite treatment guidelines for severe multiple rib fractures. The purpose of this study was to evaluate the result of early operative stabilization and to find the risk factors of surgical fixation in patients with bilateral multiple rib fractures or flail segments. Methods: From December 2005 to December 2008, the medical records of all patients who underwent operative stabilization of ribs for severe multiple rib fractures were reviewed. We investigated patients' demographics, preoperative comorbidities, underlying lung disease, chest trauma, other associated injuries, number of surgical rib fixation, combined operations, perioperative ventilator support, and postoperative complications to find the factors affecting the mortality after surgical treatment. Results: The mean age of the 96 patients who underwent surgical stabilization for bilateral multiple rib fractures or flail segments was 56.7 years (range: 22 to 82 years), and the male-to-female ratio was 3.6:1. Among the 96 patients, 16 patients (16.7%) underwent reoperation under general or epidural anesthesia due to remaining fracture with severe displacement. The surgical mortality of severe multiple rib fractures was 8.3% (8/96), 7 of those 8 patients (87.5%) dying from acute respiratory distress syndrome or sepsis. And the other one patient expired from acute myocardial infarction. The risk factors affecting mortality were liver cirrhosis, chronic obstructive pulmonary disease, concomitant severe head or abdominal injuries, perioperative ventilator care, postoperative bleeding or pneumonia, and tracheostomy. However, age, number of fractured ribs, lung parenchymal injury, pulmonary contusion and combined operations were not significantly related to mortality. Conclusion: In the present study, surgical fixation of ribs could be carried out as a first-line therapeutic option for bilateral rib fractures or flail segments without significant complications if the risk factors associated with mortality were carefully considered. Furthermore, with a view of restoring pulmonary function, as well as chest wall configuration, early operative stabilization of the ribs is more helpful than conventional treatment for patients with severe multiple rib fractures.