• Title/Summary/Keyword: Displacement function

Search Result 1,015, Processing Time 0.024 seconds

Viscoelastic Modeling of Automotive Bushing for Axial Mode (축방향 모드에 대한 자동차 부싱의 점탄성 모델링)

  • Lee, Seong-Beom;Lee, Su-Young
    • Elastomers and Composites
    • /
    • v.39 no.3
    • /
    • pp.228-233
    • /
    • 2004
  • A bushing is a device used in automotive suspension systems to reduce the load transmitted from the wheel to the frame of the vehicle. A bushing is a hollow cylinder, which is bonded to a solid steel shaft at its inner surface and a steel sleeve at its outer surface. The relation between the force applied to the shaft and the relative deformation of a bushing is nonlinear and exhibits features of viscoelasticity. Since a force-displacement relation for bushings is important for multibody dynamics numerical simulations, the relation is expressed in terms of a force relaxation function and a method of determination by experiments on bushings has been developed. For the nonlinear viscoelastic axial response, Pipkin-Rogers model, the direct relation of force and displacement, has been derived from experiment. It is shown that the predictions by the proposed force-displacement relation are in very good agreement with the experimental results.

Optimum design of viscous dampers to prevent pounding of adjacent structures

  • Karabork, Turan;Aydin, Ersin
    • Earthquakes and Structures
    • /
    • v.16 no.4
    • /
    • pp.437-453
    • /
    • 2019
  • This study investigates a new optimal placement method for viscous dampers between structures in order to prevent pounding of adjacent structures with different dynamic characteristics under earthquake effects. A relative displacement spectrum is developed in two single degree of freedom system to reveal the critical period ratios for the most risky scenario of collision using El Centro earthquake record (NS). Three different types of viscous damper design, which are classical, stair and X-diagonal model, are considered to prevent pounding on two adjacent building models. The objective function is minimized under the upper and lower limits of the damping coefficient of the damper and a target modal damping ratio. A new algorithm including time history analyses and numerical optimization methods is proposed to find the optimal dampers placement. The proposed design method is tested on two 12-storey adjacent building models. The effects of the type of damper placement on structural models, the critical period ratios of adjacent structures, the permissible relative displacement limit, the mode behavior and the upper limit of damper are investigated in detail. The results of the analyzes show that the proposed method can be used as an effective means of finding the optimum amount and location of the dampers and eliminating the risk of pounding.

Evaluation of the radiation damage effect on mechanical properties in Tehran research reactor (TRR) clad

  • Amirkhani, Mohamad Amin;Khoshahval, Farrokh
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2975-2981
    • /
    • 2020
  • Radiation damage is one of the aging important causes in nuclear reactors. Radiation damage causes changes in material properties. In this study, this effect has been evaluated and analyzed on the clad of the Tehran research reactor (TRR). A grade 6061 aluminum is used as a clad in the TRR. The MCNPX code is used to designate the most sensitive location of the reactor and calculate neutron flux distribution. Then, a software using FORTRAN language programming is developed to process the particle track (PTRAC) output file of the MCNPX code. The SRIM code is used here to calculate the rate of displacement per atom. Moreover, the SPECOMP and SPECTER codes are also applied to estimate the displacement rate and compared with the results attained using the SRIM code. The rate of displacement per atom by the SPECTER and SRIM codes have been obtained 2.54 × 10-7 dpa/s and 2.44 × 10-7 dpa/s (QD method), respectively. Also, the mechanical properties have been evaluated using the RCC-MRx code and have been compared with experimental results. Finally, the change in the matter specification has been analyzed as a function of time.

Wind-induced random vibration of saddle membrane structures: Theoretical and experimental study

  • Rongjie Pan;Changjiang Liu;Dong Li;Yuanjun Sun;Weibin Huang;Ziye Chen
    • Wind and Structures
    • /
    • v.36 no.2
    • /
    • pp.133-147
    • /
    • 2023
  • The random vibration of saddle membrane structures under wind load is studied theoretically and experimentally. First, the nonlinear random vibration differential equations of saddle membrane structures under wind loads are established based on von Karman's large deflection theory, thin shell theory and potential flow theory. The probabilistic density function (PDF) and its corresponding statistical parameters of the displacement response of membrane structure are obtained by using the diffusion process theory and the Fokker Planck Kolmogorov equation method (FPK) to solve the equation. Furthermore, a wind tunnel test is carried out to obtain the displacement time history data of the test model under wind load, and the statistical characteristics of the displacement time history of the prototype model are obtained by similarity theory and probability statistics method. Finally, the rationality of the theoretical model is verified by comparing the experimental model with the theoretical model. The results show that the theoretical model agrees with the experimental model, and the random vibration response can be effectively reduced by increasing the initial pretension force and the rise-span ratio within a certain range. The research methods can provide a theoretical reference for the random vibration of the membrane structure, and also be the foundation of structural reliability of membrane structure based on wind-induced response.

A new refined hyperbolic shear deformation theory for laminated composite spherical shells

  • Kada, Draiche;Abdelouahed, Tounsi
    • Structural Engineering and Mechanics
    • /
    • v.84 no.6
    • /
    • pp.707-722
    • /
    • 2022
  • In this study, a new refined hyperbolic shear deformation theory (RHSDT) is developed using an equivalent single-layer shell displacement model for the static bending and free vibration response of cross-ply laminated composite spherical shells. It is based on a new kinematic in which the transverse displacement is approximated as a sum of the bending and shear components, leading to a reduction of the number of unknown functions and governing equations. The proposed theory uses the hyperbolic shape function to account for an appropriate distribution of the transverse shear strains through the thickness and satisfies the boundary conditions on the shell surfaces without requiring any shear correction factors. The shell governing equations for this study are derived in terms of displacement from Hamilton's principle and solved via a Navier-type analytical procedure. The validity and high accuracy of the present theory are ascertained by comparing the obtained numerical results of displacements, stresses, and natural frequencies with their counterparts generated by some higher-order shear deformation theories. Further, a parametric study examines in detail the effect of both geometrical parameters (i.e., side-to-thickness ratio and curvature-radius-to-side ratio), on the bending and free vibration response of simply supported laminated spherical shells, which can be very useful for many modern engineering applications and their optimization design.

Some properties of the Green's function of simplified elastodynamic problems

  • Sanchez-Sesma, Francisco J.;Rodriguez-Castellanos, Alejandro;Perez-Gavilan, Juan J.;Marengo-Mogollon, Humberto;Perez-Rocha, Luis E.;Luzon, Francisco
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.507-518
    • /
    • 2012
  • It is now widely accepted that the resulting displacement field within elastic, inhomogeneous, anisotropic solids subjected to equipartitioned, uniform illumination from uncorrelated sources, has intensities that follow diffusion-like equations. Typically, coda waves are invoked to illustrate this concept. These waves arrive later as a consequence of multiple scattering and appear at "the tail" (coda, in Latin) of seismograms and are usually considered an example of diffuse field. It has been demonstrated that the average correlations of motions within a diffuse field, in frequency domain, is proportional to the imaginary part of Green's function tensor. If only one station is available, the average autocorrelation is equal to the average squared amplitudes or the average power spectrum and this gives the Green's function at the source itself. Several works address this point from theoretical and experimental point of view. However, a complete and explicit analytical description is lacking. In this work we study analytically some properties of the Green's function, specifically the imaginary part of Green's function for 2D antiplane problems. This choice is guided by the fact that these scalar problems have a closed analytical solution (Kausel 2006). We assume the diffusiveness of the field and explore its analytical consequences.

Approximate solution for a building installed with a friction damper : revisited and new result (마찰감쇠기가 설치된 건물 응답의 근사해 : 재 고찰 및 새로운 결과)

  • Min, Kyung-Won;Seong, Ji-Young;Lee, Sung-Kyung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.850-854
    • /
    • 2009
  • Approximate analysis for a building installed with a friction damper is revisited to get insight of its dynamic behavior. Energy balance equation is used to have a closed analytical form solution of dynamic magnification factor (DMF) for the building with combined viscous and friction damping. It is found out that DMF is dependent on friction force ratio and resonance frequency. Linear transfer function from input external force to output building displacement is obtained by simplifying DMF equation. Root mean square of building displacement is derived under earthquake-like random excitation. Finally, design of friction damper is proposed by processing target control ratio, damping ratio factor, and friction force in sequence.

  • PDF

Using harmonic class loading for damage identification of plates by wavelet transformation approach

  • Beheshti-Aval, S.B.;Taherinasab, M.;Noori, M.
    • Smart Structures and Systems
    • /
    • v.8 no.3
    • /
    • pp.253-274
    • /
    • 2011
  • In this paper, the harmonic displacement response of a damaged square plate with all-over part-through damage parallel to one edge is utilized as the input signal function in wavelet analysis. The method requires the properties of the damaged plate, i.e., no information about the original undamaged structure is required. The location of damage is identified by sudden changes in the spatial variation of transformed response. The incurred damage causes a change in the stiffness or mass of the plate. This causes a localized singularity which can be identified by a wavelet analysis of the displacement response. In this study via numerical examples shown by using harmonic response is more versatile and effective compared with the static deflection response, specially in the presence of noise. In the light of the obtained results, suggestions for future work are presented and discussed.

Buckling of rectangular plates with mixed edge supports

  • Xiang, Y.;Su, G.H.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.4
    • /
    • pp.401-416
    • /
    • 2002
  • This paper presents a domain decomposition method for buckling analysis of rectangular Kirchhoff plates subjected to uniaxial inplane load and with mixed edge support conditions. A plate is decomposed into two rectangular subdomains along the change of the discontinuous support conditions. The automated Ritz method is employed to derive the governing eigenvalue equation for the plate system. Compatibility conditions are imposed for transverse displacement and slope along the interface of the two subdomains by modifying the Ritz trial functions. The resulting Ritz function ensures that the transverse displacement and slope are continuous along the entire interface of the two subdomains. The validity and accuracy of the proposed method are verified with convergence and comparison studies. Buckling results are presented for several selected rectangular plates with various combination of mixed edge support conditions.

Post traumatic malocclusion and its prosthetic treatment

  • Park, In-Phill;Heo, Seong-Joo;Koak, Jai-Young;Kim, Seong-Kyun
    • The Journal of Advanced Prosthodontics
    • /
    • v.2 no.3
    • /
    • pp.88-91
    • /
    • 2010
  • Mandible fractures belong to the most common fractures encountered in maxillofacial trauma. Because mandible is such a unique structure with hinge joint and masticatory muscles attached to the body of mandible, attention must be paid to avoid displacement during treatment. Displacement during fracture reduction leads to malocclusion. Many TMJs function with complete comfort and apparent normalcy in adapted centric posture, even though they have undergone deformation caused by trauma. This clinical report describes the patient with post traumatic malocclusion and its prosthetic treatment. His fractured mandible was openly reduced in changed position, as a result his occlusion has been changed. He was treated by prosthetic method in so-called adapted centric posture.