• Title/Summary/Keyword: Displacement function

Search Result 1,015, Processing Time 0.027 seconds

Vibration Analyses of the STSAT-3 Satellite (과학기술위성 3 호 진동해석)

  • Cho, Hee-Keun;Suh, Jung-Ki
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.502-507
    • /
    • 2008
  • An entire composite structure satellite is developing for the first time in Korea. All of the structure is made of CFRP-composite faced aluminum honeycomb sandwich structure. Here the random and sinusoidal spectrum analysis of the satellite was carried out by using the finite element method. The general spectrum analysis was herein performed but also the PSD (power spectrum density) function for random vibration analysis had been transformed into equivalent time domain function and then transient analysis is conducted. The time history of displacement, acceleration, stress and velocity responses with respect to the PSD input has been achieved by the time dependent transient function transformed from frequency PDS function. It enables one to perform dynamic durability analysis and then expect the life time of the composite structure. The composite faced sandwich structure's spectrum analysis of a domestically-developed satellite, STSAT-3, has been discussed in the present study.

  • PDF

Pitch Accent Realization in North Kyungsang Korean: Tonal Alignment as a Function of Nasal Position in Syllables

  • Sohn, Hyang-Sook
    • Phonetics and Speech Sciences
    • /
    • v.3 no.2
    • /
    • pp.37-52
    • /
    • 2011
  • This study investigates patterns of the alignment of the accentual peaks in bisyllabic words of the CVNCV, CVNV, and CVNNV structures in North Kyungsang Korean. Based on the tonal alignment, patterns of the F0 pitch excursion are discussed relative to one another. Issues are addressed concerning how the tonal targets are aligned, and how the tonal specifications of nasals in postvocalic, intervocalic, and prevocalic environments are supplied in the LH, HL, and HH classes. Tonal specification of nasals in various environments is accounted for by extension of the L target, displacement of the pitch peak, and interpolation between two tonal targets, depending on the tonal class. The results in this study provide preliminary evidence that the categorical alignment of the tonal targets is implemented by simply checking the presence or absence of a nasal before or after the nucleus vowel on the segmental string, without reference to the constituency of the nasal in the syllable structure. However, the prosodic structure has a key role to play in explaining speaker-dependent variations in the tonal alignment. Sensitivity to tautosyllabicity has an effect on the shape of the F0 contour, and disparity in the patterns of the pitch excursion is represented as a function of syllable structure correlated with segmental composition of the nasal.

  • PDF

Computational Predictions of Pile Downdrag (부마찰력의 계산적 예측방법)

  • Kim, Myoung Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.2
    • /
    • pp.115-123
    • /
    • 1989
  • A computer program evaluating the pile downdrag is developed using the conventional elastic solid method. Modification of the conventional method has been performed by introducing the concept of critical relative displacement. A simple transfer function method which employes the critical relative displacement as a pile-soil slip criterion and calculates downdrag by Mohr-Coulomb equation, has also been developed. The results of three methods are all found to be in good agreement with field observations. When they are applied to a centrifuge modeling problem of pile downdrag to predict its result, however, diverse answers are obtained. Overall, the simple transfer function method developed in this study seems to be the most effective in the evaluation of pile downdrag, considering the quality of its result and its efficiency in computation.

  • PDF

A Study on the PES Estimation for Developing High-TPI HDD (HIGH-TPI HDD 구현을 위한 PES ESTIMATION에 관한 연구)

  • Koh, Jeong-Seok;Kang, Seong-Woo;Han, Yun-Sik;Kim, Young-Hoon;Hwang, Tae-Yeon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.122-127
    • /
    • 2002
  • A frequency-domain PES estimation and its prediction method are proposed for the tightly-coupled servo/mechanical design of high-TPI HDD system above 100 kTPI. The major two disturbance energies which are related with mechanical vibrations inside of HDD are used to predict the drive-level PES, while considering closed-loop servo dynamics. One is the torque disturbance which mainly comes from aerodynamic excitation of HSA system and the other is the displacement disturbance from disk-spindle dynamics. In order to obtain the accurate error transfer function of closed-loop servo control, the plant model is measured by accurate experiment. The measured PES is compared with predicted one in terms of frequency-domain PES spectrum and its standard variation value. It is proved that the proposed frequency-domain PES estimation/prediction method is capable of predicting drive-level PES of high-TPI hard disk drive.

  • PDF

Trefftz Finite Element Method and Cavity Element Formulationfor Plane Elasticity Problems (평면 탄성문제의 트래프츠 유한요소법과 캐비티요소의 구성)

  • Lim, Jangkeun;Song, Kwansup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.163-171
    • /
    • 1996
  • For the effective analysis of two dimensional plane problems, Treffiz finite elements and cavity elements have been proposed. These element matrix equaitons were formulated on the basis of hybrid variational principle and Treffiz function sets derived consitstently from the complex theoy of plane elasticity. In order to suggest the accuracy chatacteristics of the proposed Treffiz elements typical plane problems were analyzed and these results were compared with ones obtained by using the conveintional displacement type elements. The accuracy of the proposed elements is less sensitive to the element size and shape than the conventional displacement type elements. These elements, being able to be formed with multi-nodes, give the convenient modeling of an analytic domain. The cavity elements give the comparatively exact values of stress concentration factors of stress intensity factors and can be effectively used for the analysis of mechanical stuctures containing various cavities.

충격하중을 받는 유한평판의 3차원 동탄성이론에 의한 응력해석

  • 양인영;김선규;박정수
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.51-64
    • /
    • 1991
  • In this paper, an attempt is made to analyze the impulsive stress directly underneath the concentrated impact point for a supported square plate by using the three-dimensional dynamic theory of elasticity and the potential theory of displacement (stress function) on the supposition that the load, F$_{*}$0 sin .omega.t, acted on the central part of it. The results obtained from this study are as follows: 1. The impulsive stress cannot be analyzed directly underneath the acting point of concenrated impact load in privious theories, but can be analyzed by using the three-dimensional dynamic theory of elasticity and the potential theory of displacement. 2. Theorically, with increasing the pulse width of applied load, it was possible to clarify that the amount of stress in the point of concentrated impact load was increased and that of stress per unit impulse was decreased. 3. The numerical inversion of laplace transformation by the use of the F.F.T algorithm contributes the reduction of C.P.U time and the improvement of the accuracy or results. 4. In this paper recommended, it is found that the approximate equation of impact load function P (.tau.) = A.tau. exp (-B.tau.), and P (.tau.) =0.85A exp (-B.tau.) sinC.tau. could actually apply to all impact problem. In compared with the experimental results, the propriety of the analytical method is reasonable.

  • PDF

The Curved Interfacial Crack Analysis between Foam and Composite Materials under Anti-plane Shear Force (반평면 전단하중력하에서 곡면형상 접합면을 가지는 폼과 복합재료 접합부의 계면크랙에 관한 연구)

  • 박상현;전흥재
    • Composites Research
    • /
    • v.13 no.4
    • /
    • pp.67-74
    • /
    • 2000
  • The general solution of the anti-plane shear problem for the curved interfacial crack between viscoelastic foam and composites was investigated with the complex variable displacement function. Kelvin-Maxwell three parameter model is used to present viscoelasticity and the Laplace transform was applied to treat the viscoelastic characteristics of foam in the analysis. The stress intensity factor near the interfacial crack tip was predicted by considering both anisotropic and viscoelastic properties of two different materials. The results showed that the stress intensity factor increased with increasing the curvature of the curved interfacial crack and it also increased and eventually converged to a specific value with increasing time. The stress intensity factor increased with increasing the ratio of stiffness coefficients between foam and composites and the effect of fiber orientation on the stress intensity factor decreased with increasing the ratio of stiffness coefficients between foam and composites.

  • PDF

Higher-order assumed stress quadrilateral element for the Mindlin plate bending problem

  • Li, Tan;Qi, Zhaohui;Ma, Xu;Chen, Wanji
    • Structural Engineering and Mechanics
    • /
    • v.54 no.3
    • /
    • pp.393-417
    • /
    • 2015
  • In this paper an 8-node quadrilateral assumed stress hybrid Mindlin plate element with $39{\beta}$ is presented. The formulation is based on complementary energy principle. The proposed element is free of shear locking and is capable of passing all the patch tests, especially the non-zero constant shear enhanced patch test. To accomplish this purpose, special attention is devoted to selecting boundary displacement interpolation and stress approximation in domain. The arbitrary order Timoshenko beam function is successfully used to derive the boundary displacement interpolation. According to the equilibrium equations, an appropriate stress approximation is rationally derived. Particularly, in order to improve element's accuracy, the assumed stress field is derived by employing $39{\beta}$ rather than conventional $21{\beta}$. The resulting element can be adopted to analyze both moderately thick and thin plates, and the convergence for the very thin case can be ensured theoretically. Excellent element performance is demonstrated by a wide of experimental evaluations.

An improved parametric formulation for the variationally correct distortion immune three-noded bar element

  • Mukherjee, Somenath;Manju, S.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.3
    • /
    • pp.261-281
    • /
    • 2011
  • A new method of formulation of a class of elements that are immune to mesh distortion effects is proposed here. The simple three-noded bar element with an offset of the internal node from the element center is employed here to demonstrate the method and the principles on which it is founded upon. Using the function space approach, the modified formulation is shown here to be superior to the conventional isoparametric version of the element since it satisfies the completeness requirement as the metric formulation, and yet it is in agreement with the best-fit paradigm in both the metric and the parametric domains. Furthermore, the element error is limited to only those that are permissible by the classical projection theorem of strains and stresses. Unlike its conventional counterpart, the modified element is thus not prone to any errors from mesh distortion. The element formulation is symmetric and thus satisfies the requirement of the conservative nature of problems associated with all self-adjoint differential operators. The present paper indicates that a proper mapping set for distortion immune elements constitutes geometric and displacement interpolations through parametric and metric shape functions respectively, with the metric components in the displacement/strain replaced by the equivalent geometric interpolation in parametric co-ordinates.

Flexure of cross-ply laminated plates using equivalent single layer trigonometric shear deformation theory

  • Sayyad, Atteshamuddin S.;Ghugal, Yuwaraj M.
    • Structural Engineering and Mechanics
    • /
    • v.51 no.5
    • /
    • pp.867-891
    • /
    • 2014
  • An equivalent single layer trigonometric shear deformation theory taking into account transverse shear deformation effect as well as transverse normal strain effect is presented for static flexure of cross-ply laminated composite and sandwich plates. The inplane displacement field uses sinusoidal function in terms of thickness coordinate to include the transverse shear deformation effect. The cosine function in thickness coordinate is used in transverse displacement to include the effect of transverse normal strain. The kinematics of the present theory is much richer than those of the other higher order shear deformation theories, because if the trigonometric term (involving thickness coordinate z) is expanded in power series, the kinematics of higher order theories (which are usually obtained by power series in thickness coordinate z) are implicitly taken into account to good deal of extent. Governing equations and boundary conditions of the theory are obtained using the principle of virtual work. The closed-form solutions of simply supported cross-ply laminated composite and sandwich plates have been obtained. The results of present theory are compared with those of the classical plate theory (CPT), first order shear deformation theory (FSDT), higher order shear deformation theory (HSDT) of Reddy and exact three dimensional elasticity theory wherever applicable. The results predicted by present theory are in good agreement with those of higher order shear deformation theory and the elasticity theory.