• Title/Summary/Keyword: Displacement efficiency

Search Result 555, Processing Time 0.026 seconds

A Study on Shaft Alignment of the Rotating Machinery by Using Strain Gages (스트레인게이지를 이용한 회전체의 축정렬 연구)

  • Kim, Koung-Suk;Jang, Wan-Shik;Na, Sang-Soo;Jung, Hyun-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.5
    • /
    • pp.126-132
    • /
    • 2002
  • Misaligned shafts of the rotating machinery have caused noise, vibration. bearing failures, and stress concentration of coupling parts which decrease the efficiency and life of shaft systems. Therefore the proper shaft alignment of those system should be monitored continuously in dynamic condition. To solve these problems under dynamic condition a telemetry system is used. In this study, the condition of the least bending moment which is known by analyzing the structure and stress induced by misalignment is found. After the shaft is aligned by dial gage, a telemetry system with strain gages is installed on shaft. The relationship between bearing displacement and moment of coupling part influenced by misalignment is investigated. The moment derived from two shaft strain at the nearby coupling is measured. The bending strain is measured 5 times for average in static state as well as in dynamic state with 100∼700 rpm.

A Study on the Characteristics of Behavior of Tripod Mechanism in Swashplate Type Piston Motor (사판식 피스톤 모터의 트라이포드 기구의 거동 특성 연구)

  • Ham, Y.B.;Ha, J.H.;Park, K.M.;Kim, S.D.
    • Journal of Power System Engineering
    • /
    • v.6 no.3
    • /
    • pp.36-41
    • /
    • 2002
  • A swashplate type piston motor with a tripod joints is introduced to improve compactness and starting torque in conventional types of motor. If the driving torque of motor shaft is transmitted by utilizing the mechanism, its friction torque loss would be drastically reduced and mechanical efficiency would be improved because the lateral force on the piston of the rod type motor with tripod joints mechanism is relatively smaller than that of the conventional plunger type motor. In particular, kinematics analysis for the mechanism are done as a preliminary study to investigate the feasibility of the mechanism in the axial piston motor. General formulas are derived from the displacement and velocity analysis of the mechanism, showing relationships between output shaft and shoe holder motion. A series of numerical calculations are carried out for a medium size motor with 160cc/rev using the formulas and their graphical plots are shown as well.

  • PDF

Investigation on the Excessive Vibration of A Mixer Facility in A Water Purification Plant (정수장용 교반기 시설의 과진동 원인 분석)

  • Park, Jin-Ho;Lee, Jeong-Han;Kim, Bong-Soo;Kang, Mun-Hu;Kim, Dong-Soo;Joo, Yoon-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.312-316
    • /
    • 2002
  • Recently, mixers are being widely used in the water purification plant in order to increase the filtration efficiency. It has been found that a severe vibration was being felt on a upper structure of a mixer facility during steady state operation. The cause of the excessive vibration of the structure to which the mixer's shaft is supported has been evaluated through modal analysis on the shaft and vibration measurements during operation. The fundamental natural frequency of the mixer's shaft is found to be around 1.8 Hz and the main vibratory frequency around 30 Hz. It has been tuned out that the main vibratory frequency, 30 Hz is coincident with the fundamental holding frequency of the upper structure, and that the acceleration signal of the upper structure and the displacement signal of the mixer's shaft showed highly coherent to each other. Accordingly, it reveals that the main cause of the excessive vibration is due not to the mixer's vibration but to the natural frequency of the upper structure excited by flow turbulence.

  • PDF

Design and characteristics of high torque ultrasonic motor (고 토크 초음파 모터의 설계 및 특성)

  • Oh, Jin-Heon;Lim, Jong-Nam;Park, Cheol-Hyun;Heo, Jun;Lee, Seung-Su;Lim, Kee-Joe
    • Proceedings of the KIEE Conference
    • /
    • 2008.10a
    • /
    • pp.175-176
    • /
    • 2008
  • An ultrasonic motor of high torque with a new configuration for application in automobiles is proposed. The newly designed stator is two sided vibrator consisting of a toothed metal disk with a piezoelectric ceramic ring bonded on both faces of the disk which generates a flexural traveling wave along the circumference of disk. In this configuration, the displacement on the surface of stator may not be confined. It also produces a large vibrating force and amplitude because the vibrator is sandwiched by two piezoelectric plates. It is possible to increase the torque by improving the vibration characteristics. To compute the vibration mode of the motor of diameter 48 mm, the finite element method was used. A 6th mode was chosen as the operation mode with a resonance frequency of about 64.4 kHz. According to this design and measured its performance, a prototype was fabricated. The performance measurement of the prototype motor showed that its stall torque was about 1.8 Nm and efficiency was 37 % at 60 % of the maximum torque.

  • PDF

Loading capacity evaluation of composite box girder with corrugated webs and steel tube slab

  • He, Jun;Liu, Yuqing;Xu, Xiaoqing;Li, Laibin
    • Structural Engineering and Mechanics
    • /
    • v.50 no.4
    • /
    • pp.501-524
    • /
    • 2014
  • This paper presents a type of composite box girder with corrugated webs and concrete filled steel tube slab to overcome cracking on the web and reduce self-weight. Utilizing corrugated steel web improves the efficiency of prestressing introduced into the top and bottom slabs due to the accordion effect. In order to understand the loading capacity of such new composite structure, experimental and numerical analyses were conducted. A full-scale model was loaded monotonically to investigate the deflection, strain distribution, loading capacity and stiffness during the whole process. The experimental results show that test specimen has enough loading capacity and ductility. Based on experimental works, a finite element (FE) model was established. The load-displacement curves and stress distribution predicted by FE model agree well with that obtained from experiments, which demonstrates the accuracy of proposed FE model. Moreover, simplified theoretical analysis was conducted depending on the assumptions which were confirmed by the experimental and numerical results. The simplified analysis results are identical with the tested and numerical results, which indicate that simplified analytical model can be used to predict the loading capacity of such composite girder accurately. All the findings of present study may provide reference for the application of such structure in bridge construction.

Analysis of multi leaf spring based on contact mechanics - a novel approach

  • Kumaravelan, R.;Ramesh, S.;Gandhi, V.C. Sathish;Agu, M. Joemax;Thanmanaselvi, M.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.3
    • /
    • pp.443-454
    • /
    • 2013
  • A leaf spring, especially the longitudinal type is liable and persistent element in automotive suspension system. In the present scenario the composite materials are widely used in the automobile industries has shown a great interest in the replacement of steel spring due to high strength by weight ratio. Previous investigations focused on stresses and displacement analysis of single leaf spring for different materials. The present work aims to design and analysis of leaf spring for two different cases by considering the Young's modulus to yield strength ratio. In the first case the analysis deals with the design and analysis of a single cantilever solid triangle beam which is an equivalent beam of a spring with three leaves having uniform strength. In the second case a 3-beams of rectangular cross section has been considered which is equivalent to a spring with three leaves. The analysis was carried out based on contact mechanics approach. The results were compared, that the fiberglass composite leaf spring is suitable for high loading capacity, reliability and efficiency.

Suboptimal control strategy in structural control implementation

  • Xu, J.Y.;Li, Q.S.;Li, G.Q.;Wu, J.R.;Tang, J.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.1
    • /
    • pp.107-121
    • /
    • 2005
  • The suboptimal control rule is introduced in structural control implementation as an alternative over the optimal control because the optimal control may require large amount of processing time when applied to complex structural control problems. It is well known that any time delay in structural control implementation will cause un-synchronized application of the control forces, which not only reduce the effectiveness of an active control system, but also cause instability of the control system. The effect of time delay on the displacement and acceleration responses of building structures is studied when the suboptimal control rule is adopted. Two examples are given to show the effectiveness of the suboptimal control rule. It is shown through the examples that the present method is easy in implementation and high in efficiency and it can significantly reduce the time delay in structural control implementation without significant loss of performance.

Primary damage of 10 keV Ga PKA in bulk GaN material under different temperatures

  • He, Huan;He, Chaohui;Zhang, Jiahui;Liao, Wenlong;Zang, Hang;Li, Yonghong;Liu, Wenbo
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1537-1544
    • /
    • 2020
  • Molecular dynamics (MD) simulations were conducted to investigate the temperature effects on the primary damage in gallium nitride (GaN) material. Five temperatures ranging from 300 K to 900 K were studied for 10 keV Ga primary knock-on atom (PKA) with inject direction of [0001]. The results of MD simulations showed that threshold displacement energy (Ed) was affected by temperatures and at higher temperature, it was larger. The evolutions of defects under various temperatures were similar. However, the higher temperature was found to increase the peak number, peak time, final time and recombination efficiency while decreasing the final number. With regard to clusters, isolated point defects and little clusters were common clusters and the fraction of point defects increased with temperature for vacancy clusters, whereas it did not appear in the interstitial clusters. Finally, at each temperature, the number of Ga interstitial atoms was larger than that of N and besides that, there were other different results of specific types of split interstitial atoms.

A Study on the Characteristics of Ultrasonic Linear Motor Using Piezoelectirc Ceramics (압전세라믹을 이용한 초음파 리니어 모터의 특성연구)

  • Choi, Myeong-Il;Jeong, Dong-Seok;Chong, Hyon-Ho;Lee, Jae-Hyung;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.664-668
    • /
    • 2003
  • Transducer for ultrasonic linear motor with the symmetric and anti-symmetric modes was studied. The ultrasonic linear motor consists of two Langevin type piezoelectric vibrators that cross at right angles with each other in tip. In order to excite symmetric and anti-symmetric modes, the transducer must have a phase shift of 90 degree in space and time. Therefore, the tip of transducer moves on an elliptical motion. In this paper, the finite element analysis was used to optimize dimension and displacement of the transducer. The ultrasonic motor was fabricated using the simulated result and the driving characteristics were measured. No-load velocity was 0.28[m/s] and the maximum efficiency was 30[%] in resonance frequency.

  • PDF

Design and performances of high torque ultrasonic motor (고토크 초음파 모터의 설계 및 특성에 관한 연구)

  • Oh, Jin-Heon;Lim, Jong-Nam;Park, Cheol-Hyun;Lim, Kee-Joe
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.187-188
    • /
    • 2008
  • An ultrasonic motor of high torque with a new configuration for application in automobiles is proposed. The newly designed stator is a two sided vibrator consisting of a toothed metal disk with a piezoelectric ceramic ring bonded on both faces of the disk which generates a flexural traveling wave along the circumference of disk. In this configuration, the displacement on the surface of stator may not be confined. It also produces a large vibrating force and amplitude because the vibrator is sandwiched by two piezoelectric plates. It is possible to increase the torque by improving the vibration characteristics. To compute the vibration mode of the motor of diameter 48 mm, the finite element method was used. A 6th mode was chosen as the operation mode with a resonance frequency of about 64.4 kHz. According to this design and measured its performance, a prototype was fabricated. The performance measurement of the prototype motor showed that its stall torque was about 1.8 Nm and efficiency was 37% at 60% of the maximum torque.

  • PDF