• Title/Summary/Keyword: Displacement efficiency

Search Result 555, Processing Time 0.024 seconds

Determination of Optimal Locations for Measuring Displacements to Adjust Cable Tension Forces of Cable-Stayed Bridges (사장교 시공 중 케이블 장력 보정을 위한 최적 변위계측 위치 결정)

  • Shin, Soobong;Lee, Jung-Yong;Kim, Jae-Cheon;Jung, Kil-Je
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.2 s.54
    • /
    • pp.129-136
    • /
    • 2009
  • The paper presents an algorithm of selecting optimal locations for measuring displacements(OLD) to adjust cable tension forces during the construction of cable-stayed bridges. The rank for optimal locations can be determined from the effective independence distribution vectors(EIDV) that are computed from the Fisher Information Matrices(FIM) formulated with the displacement sensitivities. To examine the efficiency and reliability of the proposed algorithm for determining OLD, a simulation study on a cable-stayed bridge has been carried out. The results using FIM formulated with displacements are compared with those using FIM with displacement sensitivities through the simulation study. The effects of measurement noise and error in cable length on the adjustment of cable tension forces are evaluated statistically by applying the Monte Carlo scheme.

A Study on the Integrated Control and Safety Management System for 9% Ni Steel LNG Storage Tank (9% 니켈강재식 LNG 저장탱크용 통합제어안전관리시스템에 관한 연구)

  • Kim, Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.5
    • /
    • pp.13-18
    • /
    • 2010
  • This paper presents the development of an integrated control and safety management system for 9% nickel steel LNG storage tank. The new system added the measuring equipment of pressure, displacement and force compared to the conventional measurement and control system. The measured data has simultaneously been processed by integrating and analyzing with new control equipments and safety management systems. The integrated control and safety management system, which may increase a safety and efficiency of a super-large full containment LNG storage tank, added additional pressure gauges and new displacement/force sensors at the outer side wall and a welding zone of a stiffener and top girder of an inner tank, and the inner side wall of a corner protection tank. The displacement and force sensors may provide failure clues of 9% nickel steel structures such as an inner tank and a corner protection, and a LNG leakage from the inner tank. The conventional leak sensor may not provide proper information on 9% nickel steel tank fracture even though LNG is leaked until the leak detector, which is placed at the insulation area between an inner tank and a corner protection tank, sends a warning signal. Thus, the new integrated control and safety management system is to collect and analyze the temperature, pressure, displacement, force, and LNG density, which are related to the tank system safety and leakage control from the inner tank. The digital data are also measured from control systems such as displacement and force of 9% nickel steel tank safety, LNG level and density, cool-down process, leakage, and pressure controls.

A Study on Generating efficiency of the Double Acting Stirling Engine/Generator (양방향 스털링엔진/발전기의 효율 특성 연구)

  • PARK, SEONGJE;KO, JUNSEOK;HONG, YONGJU;KIM, HYOBONG;YEOM, HANKIL;IN, SEHWAN
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.1
    • /
    • pp.114-120
    • /
    • 2016
  • This paper describes generating efficiency characteristics of the double acting Stirling engine/generator for domestic small-scale CHP (Combined Heat and Power) system. In small distributed generation applications, Stirling engine has competition from fuel cell, microturbine and etc. In order to be economical in the applications, a long life with minimum maintenance is generally required. Free piston Stirling engine (FPSE) has no crank and rotating parts to generate lateral forces and require lubrication. Double acting Stirling engine/generator has one displacer and two power piston which are supported by flexure springs. Two power pistons oscillate with symmetric displacement and are connected with moving magnet type linear generators for power generation from PV work. In experiments, 1 kW class double acting free piston Stirling engine/generator is fabricated and tested. Heat is supplied to hot end of engine by the combustion of natural gas and converted to electric power by linear generators which are assembled with power pistons. The electric parameters such as voltage, current and phase are measured with for variable flow rate of fuel gas. Especially, generating efficiency of FPSE is measured with three different measurement methods. Generating efficiency of the double acting Stirling engine/alternator is about 24%.

An improved extended Kalman filter for parameters and loads identification without collocated measurements

  • Jia He;Mengchen Qi;Zhuohui Tong;Xugang Hua;Zhengqing Chen
    • Smart Structures and Systems
    • /
    • v.31 no.2
    • /
    • pp.131-140
    • /
    • 2023
  • As well-known, the extended Kalman filter (EKF) is a powerful tool for parameter identification with limited measurements. However, traditional EKF is not applicable when the external excitation is unknown. By using least-squares estimation (LSE) for force identification, an EKF with unknown input (EKF-UI) approach was recently proposed by the authors. In this approach, to ensure the influence matrix be of full column rank, the sensors have to be deployed at all the degrees-of-freedom (DOFs) corresponding to the unknown excitation, saying collocated measurements are required. However, it is not easy to guarantee that the sensors can be installed at all these locations. To circumvent this limitation, based on the idea of first-order-holder discretization (FOHD), an improved EKF with unknown input (IEKF-UI) approach is proposed in this study for the simultaneous identification of structural parameters and unknown excitation. By using projection matrix, an improved observation equation is obtained. Few displacement measurements are fused into the observation equation to avoid the so-called low-frequency drift. To avoid the ill-conditioning problem for force identification without collocated measurements, the idea of FOHD is employed. The recursive solution of the structural states and unknown loads is then analytically derived. The effectiveness of the proposed approach is validated via several numerical examples. Results show that the proposed approach is capable of satisfactorily identifying the parameters of linear and nonlinear structures and the unknown excitation applied to them.

Study on the Efficient Application of Vision-Based Displacement Measurements for the Cable Tension Estimation of Cable-Stayed Bridges (사장교 케이블의 장력 추정을 위한 영상변위 측정법의 효율적 적용에 대한 연구)

  • Lee, Hyeong-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.709-717
    • /
    • 2016
  • In this study, the convenience and efficiency of vision-based displacement measurement (VBDM) to estimate the cable tension of cable-stayed bridges and the requirements for its effective application were examined. To demonstrate its convenience and efficiency, it was confirmed that VBDM can be accomplished with a minimum amount of equipment using a commercial camcorder. In this case, it was found that the accuracy of estimation of the natural frequencies is sufficient, even though magnitude errors can occur when conducting high-speed recording at the low resolution afforded by the minimal equipment employed. It was also confirmed that the most important factor in detecting the precise natural frequencies is the use of the appropriate frequency range in the tension estimation using vibration. Based on these results, a study was carried out on the accuracy variation of the estimated tension according to the frame rate of a commercial camcorder. For this purpose, an experiment was performed to estimate the cable tension in a cable-stayed bridge model. Through this experiment, the detectable tensions of cables with various natural frequencies as a function of the frame rate were summarized. As a result, it was shown that the frame rate should be determined based on the natural frequency which is estimated to be located within the appropriate frequency range (approximately 10~75% of theoretical range) considering the aliasing and low-frequency distortion due to excitations.

Improving Fuel Efficiency of a Hybrid Excavator (하이브리드 굴삭기 연비 개선 연구)

  • Cho, Sungwoo;Yoo, Seungjin;Park, Cheol-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.2
    • /
    • pp.211-217
    • /
    • 2015
  • Emission gas regulations and constantly increasing fuel costs call for the worldwide use of environmentally friendly and energy-efficient machines in industry. To meet these requirements, a hybrid excavator prototype has been developed that incorporates an electric swing motor, engine assist motor, and ultra-capacitor module into a conventional hydraulic excavator of the 22-ton class. This paper mainly describes a few techniques to optimize its energy efficiency. These include 1) controlling the engine speed in proportion to the load torque, 2) controlling the pump displacement when driving the electric swing system, 3) managing the ultra-capacitor voltage to minimize the electrical energy loss, and 4) reducing the cooling fan speed to improve the energy efficiency of the system.

Effects of hydrogen-enriched LPG fuelled engine on exhaust emission and thermal efficiency (LPG 엔진에서 수소첨가에 따른 배기 성능과 열효율에 미치는 영향)

  • Kim, jinho;Cho, unglae;Choi, gyeungho
    • Journal of Hydrogen and New Energy
    • /
    • v.12 no.3
    • /
    • pp.169-176
    • /
    • 2001
  • The purpose of study is to obtain low-emission and high-efficiency in LPG engine with hydrogen enrichment. The test engine was named heavy-duty variable compression ratio single cylinder engine (VCSCE). The fuel supply system provides LPG/hydrogen mixtures based on same heating value. Various sensors such as crank shaft position sensor (CPS) and hall sensor supply spark timing data to ignition controller. Displacement of VCSCE is $1858.2cm^3$. VCSCE was runned 1400rpm with compression ratio 8. Spark timing was set MBT without knocking. Relative air-fuel ratio(${\lambda}$) of this work was varied between 0.76 and 1.5. As a result, i) Maximum thermal efficiency occurred at ${\lambda}$ value 1.0. It was shown that thermal efficiency was increased approximately 5% with hydrogen enrichment at same ${\lambda}$ value. ii) Engine-out carbon monoxide (CO) emissions were decreased at a great rate under LPG/hydrogen mixture fuelling. iii) Total hydrocarbon (THC) emission was much exhausted in rich zone, same as CO. But THC was exhausted a little bit more in lean zone. iv) Finally, engine-out oxides of nitrogen (NOx) was increased with ${\lambda}$ value 1.0 zone at a greater rate with hydrogen enrichment due to high adiabatic flame temperature.

  • PDF

Peak floor acceleration prediction using spectral shape: Comparison between acceleration and velocity

  • Torres, Jose I.;Bojorquez, Eden;Chavez, Robespierre;Bojorquez, Juan;Reyes-Salazar, Alfredo;Baca, Victor;Valenzuela, Federico;Carvajal, Joel;Payaan, Omar;Leal, Martin
    • Earthquakes and Structures
    • /
    • v.21 no.5
    • /
    • pp.551-562
    • /
    • 2021
  • In this study, the generalized intensity measure (IM) named INpg is analyzed. The recently proposed proxy of the spectral shape named Npg is the base of this intensity measure, which is similar to the traditional Np based on the spectral shape in terms of pseudo-acceleration; however, in this case the new generalized intensity measure can be defined through other types of spectral shapes such as those obtained with velocity, displacement, input energy, inelastic parameters and so on. It is shown that this IM is able to increase the efficiency in the prediction of nonlinear behavior of structures subjected to earthquake ground motions. For this work, the efficiency of two particular cases (based on acceleration and velocity) of the generalized INpg to predict the peak floor acceleration demands on steel frames under 30 earthquake ground motions with respect to the traditional spectral acceleration at first mode of vibration Sa(T1) is compared. Additionally, a 3D reinforced concrete building and an irregular steel frame is used as a basis for comparison. It is concluded that the use of velocity and acceleration spectral shape increase the efficiency to predict peak floor accelerations in comparison with the traditional and most used around the world spectral acceleration at first mode of vibration.

Comparative Study on the Performance of Quadrilateral Plate Elements for the static Analysis of Limear Elastic structures( I );Displacements (사각형 판 유한 요소들의 정적 성능 비교 분석 I)

  • 이병채;이용주
    • Computational Structural Engineering
    • /
    • v.3 no.4
    • /
    • pp.91-104
    • /
    • 1990
  • Static performance of quadrilateral plate elements was compared through numerical experiments. Sixteen plate elements were selected for comparison from the literature, which were displacement elements, equilibrium elements, mixed elements or hybrid elements based on the Kirchhoff theory or the Mindlin theory. Thin plate bending problems, such as square plate problems, rhombic plate problems, circular plate problems and cantilevered plate problems, were modeled by various meshes and solved under various kinds of boundary conditions. Kirchhoff elements were not so good as Mindlin elements in view of efficiency and convergence. Hinton's elements resulted in the best results for the problems considered with respect to efficiency, convergence and reliability but in some problems they also resulted in more or less inaccurate solutions.

  • PDF

Effects of Hydrogen-enriched LPG Fuelled Engine on Exhaust Emission and Thermal Efficiency [II] (LPG엔진에서 수소첨가가 배기 성능과 열효율에 미치는 영향 [II])

  • Kwon, T.Y.;Kim, J.H.;Choi, G.H.;Chung, Y.J.
    • Journal of Hydrogen and New Energy
    • /
    • v.13 no.4
    • /
    • pp.297-303
    • /
    • 2002
  • The purpose of study is obtaining low-emission and high-efficiency in LPi engine with hydrogen enrichment. The test engine was named variable compression ratio single cylinder engine (VACRE). The fuel supply system provides LPG/hydrogen mixtures based on same heating value. A varied sensors such as crank shaft position sensor (CPS) and hall sensor supplies spark timing data to ignition controller. Displacement of VACRE is $1858.2cm^3$. VACRE was runned 1400rpm with compression ratio 8. Spark timing was set MBT without knocking. Relative air-fuel ratio($\lambda$) of this work was varied between 0,8 and 1.5.