• 제목/요약/키워드: Displacement damage effect

검색결과 163건 처리시간 0.18초

Study on changes in electrical and switching characteristics of NPT-IGBT devices by fast neutron irradiation

  • Hani Baek;Byung Gun Park;Chaeho Shin;Gwang Min Sun
    • Nuclear Engineering and Technology
    • /
    • 제55권9호
    • /
    • pp.3334-3341
    • /
    • 2023
  • We studied the irradiation effects of fast neutron generated by a 30 MeV cyclotron on the electrical and switching characteristics of NPT-IGBT devices. Fast neutron fluence ranges from 2.7 × 109 to 1.82 × 1013 n/cm2. Electrical characteristics of the IGBT device such as I-V, forward voltage drop and additionally switching characteristics of turn-on and -off were measured. As the neutron fluence increased, the device's threshold voltage decreased, the forward voltage drop increased significantly, and the turn-on and turn-off time became faster. In particular, the delay time of turn-on switching was improved by about 35% to a maximum of about 39.68 ns, and that of turn-off switching was also reduced by about 40%-84.89 ns, showing a faster switching.

Seismic response control of buildings using shape memory alloys as smart material: State-of-the-Art review

  • Eswar, Moka;Chourasia, Ajay;Gopalakrishnan, N.
    • Earthquakes and Structures
    • /
    • 제23권2호
    • /
    • pp.207-219
    • /
    • 2022
  • Seismic response control has always been a grave concern with the damage and collapse of many buildings during the past earthquakes. While there are several existing techniques like base isolation, viscous damper, moment-resisting beam-column connections, tuned mass damper, etc., many of these are succumbing to either of large displacement, near-fault, and long-period earthquakes. Keeping this viewpoint, extensive research on the application of smart materials for seismic response control of buildings was attempted during the last decade. Shape Memory Alloy (SMA) with its unique properties of superelasticity and shape memory effect is one of the smart materials used for seismic control of buildings. In this paper, an exhaustive review has been compiled on the seismic control applications of SMA in buildings. Unique properties of SMA are discussed in detail and different phases of SMA along with crystal characteristics are illustrated. Consequently, various seismic control applications of SMA are discussed in terms of performance and compared with prevalent base isolators, bracings, beam-column connections, and tuned mass damper systems.

Ductility demands of steel frames equipped with self-centring fuses under near-fault earthquake motions considering multiple yielding stages

  • Lu Deng;Min Zhu;Michael C.H. Yam;Ke Ke;Zhongfa Zhou;Zhonghua Liu
    • Structural Engineering and Mechanics
    • /
    • 제86권5호
    • /
    • pp.589-605
    • /
    • 2023
  • This paper investigates the ductility demands of steel frames equipped with self-centring fuses under near-fault earthquake motions considering multiple yielding stages. The study is commenced by verifying a trilinear self-centring hysteretic model accounting for multiple yielding stages of steel frames equipped with self-centring fuses. Then, the seismic response of single-degree-of-freedom (SDOF) systems following the validated trilinear self-centring hysteretic law is examined by a parametric study using a near-fault earthquake ground motion database composed of 200 earthquake records as input excitations. Based on a statistical investigation of more than fifty-two (52) million inelastic spectral analyses, the effect of the post-yield stiffness ratios, energy dissipation coefficient and yielding displacement ratio on the mean ductility demand of the system is examined in detail. The analysis results indicate that the increase of post-yield stiffness ratios, energy dissipation coefficient and yielding displacement ratio reduces the ductility demands of the self-centring oscillators responding in multiple yielding stages. A set of empirical expressions for quantifying the ductility demands of trilinear self-centring hysteretic oscillators are developed using nonlinear regression analysis of the analysis result database. The proposed regression model may offer a practical tool for designers to estimate the ductility demand of a low-to-medium rise self-centring steel frame equipped with self-centring fuses progressing in the ultimate stage under near-fault earthquake motions in design and evaluation.

Key technologies research on the response of a double-story isolated structure subjected to long-period earthquake motion

  • Liang Gao;Dewen Liu;Yuan Zhang;Yanping Zheng;Jingran Xu;Zhiang Li;Min Lei
    • Earthquakes and Structures
    • /
    • 제26권1호
    • /
    • pp.17-30
    • /
    • 2024
  • Earthquakes can lead to substantial damage to buildings, with long-period ground motion being particularly destructive. The design of high-performance building structures has become a prominent focus of research. The double-story isolated structure is a novel type of isolated structure developed from base isolated structure. To delve deeper into the building performance of double-story isolated structures, the double-story isolated structure was constructed with the upper isolated layer located in different layers, alongside a base isolated structure for comparative analysis. Nonlinear elastoplastic analyses were conducted on these structures using different ground motion inputs, including ordinary ground motion, near-field impulsive ground motion, and far-field harmonic ground motion. The results demonstrate that the double-story isolated structure can extend the structural period further than the base isolated structure under three types of ground motions. The double-story isolated structure exhibits lower base shear, inter-story displacement, base isolated layer displacement, story shear, and maximum acceleration of the top layer, compared to the base isolated structure. In addition, the double-story isolated structure generates fewer plastic hinges in the frame, causes less damage to the core tube, and experiences smaller overturning moments, demonstrating excellent resistance to overturning and a shock-absorbing effect. As the upper isolated layer is positioned higher, the compressive stress on the isolated bearings of the upper isolated layer in the double-story isolated structure gradually decreases. Moreover, the compressive stress on the isolated bearings of the base isolated layer is lower compared to that of the base isolated structure. However, the shock-absorbing capacity of the double-story isolated structure is significantly increased when the upper isolated layer is located in the middle and lower section. Notably, in regions exposed to long-period ground motion, a double-story isolated structure can experience greater seismic response and reduced shock-absorbing capacity, which may be detrimental to the structure.

중실원형단면 조립식 교각의 내진 성능 평가 (Evaluation of Seismic Performance of Prefabricated Bridge Piers with a Circular Solid Section)

  • 김현호;심창수;정철헌;김철환
    • 한국지진공학회논문집
    • /
    • 제11권3호
    • /
    • pp.23-31
    • /
    • 2007
  • 건설여건의 변화에 따라 교량구조물의 급속시공에 대한 요구가 늘어나고 있다. 이 논문에서는 하부구조에서 교각의 프리캐스트화를 위한 준정적 실험을 수행하였다. 프리캐스트 프리스트레스트 콘크리트 교각 설계의 가장 주요한 항목이 내진성능의 확보에 있다. 7개의 프리캐스트 교각을 제작하였고 주요 실험변수는 긴장재의 양, 프리스트레스트의 크기, 이음부의 위치 및 수로 설정하였다. 실험결과 축방향으로 도입되는 프리스트레스에 의해 작은 횡변위하에서는 일부 손상이 발생하여도 변형의 복원력을 발휘하였지만 소성힌 지구간의 손상이 많은 경우에는 이러한 복원력이 효과를 발휘하지 못하는 것을 확인하였다. 실험을 통해 관찰된 손상의 형태로부터 판단할 때 조립식 교각의 이음부 설계는 기초부와 교각부 사이의 이음부에 대해서 실시되어야한다. 축방향 긴장재의 양은 RC 교각과 강재비를 일치시키는 것은 지나친 설계가 될 수 있고 주어진 하중조건에 대한 P-M 상관도를 만족시키는 수준에서 결정되어야 한다. 변위연성도 평가를 볼 때 프리캐스트 교각에서 횡철근비는 현재의 철근 콘크리트 교각과 동일한 수준에서 확보되어야 요구연성도를 만족할 수 있다. 에너지 소산능력은 강재비가 증가함에 따라 향상되었고 이음부의 수가 많은 경우가 다소 뛰어난 능력을 발휘하였다.

전단이 RC 교각의 지진성능 및 파괴모드에 미치는 영향 (Influence of shear on seismic performance and failure mode of RC piers)

  • 이도형
    • 공학논문집
    • /
    • 제6권1호
    • /
    • pp.53-63
    • /
    • 2004
  • 본 연구에서는 지진하중을 받는 철근콘크리트 교각의 지진성능 및 파괴모드에 전단이 미치는 영향을 조사하였다. 본 연구에서 개발된 전단-축력간의 상호거동 이력응답 모델의 검증을 위하여 철근콘크리트 기둥 실험에 대한 비교해석을 수행하였다. 비교결과, 예측된 해석치는 전단에 관한 하중-변위 이력응답에 있어서 실험결과와 좋은 상관관계를 보여주었다. 아울러, 본 연구에서 개발된 모델을 이용하여 고베 지진에 의해서 손상된 철근콘크리트 교량의 비선형 시간이력 해석을 수행하였다. 교각의 변위응답에 관한 분석결과, 축력의 변화를 고려한 전단의 영향으로 인하여 최대변위가 상당히 증가하였고, 전반적인 교각 강성의 감소와 함께 진동주기의 증가를 유발한다는 것을 알 수 있었다. 따라서 전단과 축력의 영향을 동시에 고려한 응답에 철근콘크리트 교각의 지진손상 평가에 관해서 보다 나은 설명을 제공할 수 있을 것으로 사료된다.

  • PDF

연약지반에서의 교대변위를 고려한 EPS공법의 적용사례 연구 (A Case Study on the Application of EPS Construction Method Considering Abutment Displacement in Soft Ground)

  • 강희준;오일록;채영수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.698-705
    • /
    • 2004
  • Application of structural load on soft ground can cause lateral movement as well as ground break due to pressing and shearing of ground. Especially, abutment supported by pile foundation can make pile deformed due to lateral movement of ground in order to have harmful effect on structure. According to the result of this study, it is required to consider disturbance of weak soil layer when using lateral movement countermeasure method by EPS construction method as a result of performing study on safety review and EPS construction method with respect to this based on site where lateral movement occurs due to backside soil filling load at bridge abutment installed on weak ground, and it is required to sufficiently consider soil reduction during design of EPS construction method due to lateral movement deformation of soft clay layer by losing ground horizontal resistance force due to plasticity of ground around pile as well as combination part damage with pile head and expansion foundation.

  • PDF

아치형 해저 케이블 보호 구조물의 앵커 충돌 수치 시뮬레이션 (Numerical Simulation of Arch-type Submarine Cable Protector under Anchor Collision)

  • 우진호;나원배;김헌태
    • 한국해양공학회지
    • /
    • 제23권1호
    • /
    • pp.96-103
    • /
    • 2009
  • In 2006, Jeju Island in South Korea experienced a crisis, no electricity for three hours anywhere in the entire island. This incident was caused by a domino effect that occurred after one of the submarine power cables connecting the island to Haenam, a coastal city on the mainland, was damaged by an external load, probably from a ship anchor or a steel pile being used in marine farming. This study presents a collision analysis of a new submarine power cable protector called arch type reinforced concrete. For the analysis, a dynamic finite element program, ANSYS AUTODYN, was used to examine the displacement and stress of the submarine power cable protector using different material models (RHT concrete model, Mohr.Coulomb concrete model). In addition, two reinforcing bar spacings, 75 mm and 150 mm, were considered. From the analyses, the effects of the parameters (concrete model and spacing) on the results (displacement and stress) were analyzed, and the relations between the damage and parameters were found.

다팽이관 기저막의 전기 전달선 모델링 (Electrical Transmission Line Modelling of the Cochlear Basilar Membrane)

  • 장순석
    • 대한의용생체공학회:의공학회지
    • /
    • 제14권2호
    • /
    • pp.125-136
    • /
    • 1993
  • The study of Cochlear biomechanics is to clearly define three biomechanical principles of the Cochlea : Activity, Nonlinearity and Feedback. In this article, the Cochlea is linearly and actively modelled in one dimensional time domain. The sharp tunning of the Basilar Membrane displacement is shown when the amplifying activity of hair cells is added to the model. The amplified energy of the travelling displacement wave is emitted throughout the Cochlear fluid, so that the model becomes unstable. A new technique is introduced to reduce strong echos fro the Helicotrema. It makes the model less unstable. Both pure and click tones are used as input stimuli onto the ear durm. When the model is normal, the click response of the model shows that the backward emission of the amplified fluid pressure has mainly the echos from the Helicotrema. However, when the linear and active model is assumed to be abnormal, that is, some of hair cells are damaged not to produce the active process, the effect of the hair cell damage is resulted in the Oto-acoustic emission. The frequency response of the abnormally emitted sound pressure shows that the Oto-acoustic emission has the information about the characteristic frequency of the damaged hair cell. The main aim of this paper is to demonstrate the active biomechanics of the Chchlea in the time domain.

  • PDF

강재 코일 댐퍼의 배관시스템 진동제어 효과 분석을 위한 진동대시험 (Shaking Table Test for Analysis of Effect on Vibration Control of the Piping System by Steel Coil Damper)

  • 최송이;소기환;조성국
    • 한국지진공학회논문집
    • /
    • 제26권1호
    • /
    • pp.39-48
    • /
    • 2022
  • Many piping systems installed in the power plant are directly related to the safety and operation of the plant. Various dampers have been applied to the piping system to reduce the damage caused by earthquakes. In order to reduce the vibration of the piping system, this study developed a steel coil damper (SCD) with a straightforward structure but excellent damping performance. SCD reduces the vibration of the objective structure by hysteretic damping. The new SCD damper can be applied to high-temperature environments since it consists of steel members. The paper introduces a design method for the elastoplastic coil spring, which is the critical element of SCD. The practical applicability of the design procedure was validated by comparing the nonlinear force-displacement curves calculated by design equations with the results obtained from nonlinear finite element analysis and repeated loading test. It was found that the designed SCD's have a damping ratio higher than 25%. In addition, this study performed a set of seismic tests using a shaking table with an existing piping system to verify the vibration control capacity on the piping system by SCD. Test results prove that the SCD can effectively control the displacement vibration of the piping system up to 80%.