• Title/Summary/Keyword: Displacement control

Search Result 1,695, Processing Time 0.03 seconds

A Study on the Phase Bandwidth Frequency of a Directional Control Valve Based on the Hydraulic Line Pressure (배관 압력을 이용한 방향제어밸브 위상각 대역폭 주파수 측정에 관한 연구)

  • Kim, Sungdong;Lee, Jung-eun;Shin, Daeyoung
    • Journal of Drive and Control
    • /
    • v.15 no.4
    • /
    • pp.1-10
    • /
    • 2018
  • Spool displacement of a direction control valve is the standard signal to measure the bandwidth frequency of the direction control valve. When the spool displacement signal is not available, it is suggested in this study to use the metering hydraulic line as an alternative way to measure - 90 degree phase bandwidth frequency of the hydraulic direction control valve. Dynamics of the hydraulic line is composed of inertia, capacitance, and friction effects. The effect of oil inertia is dominant in common hydraulic line dynamics and the line dynamics is close to a derivative action in a range of high frequency; such as a range of bandwidth frequency of common directional control valves. Phase difference between spool displacement and line load pressure is nearly constant as a valve close to 90 degree. If phase difference is compensated from the phase between valve input and pressure, compensated phase may be almost same as the phase of spool displacement that is a standard signal to measure phase bandwidth frequency of the directional control valve. A series of experiments were conducted to examine the possibility of using line pressure in to measure phase bandwidth frequency of a directional control valve. Phase bandwidth frequency could be measured with relatively high precision based on metering hydraulic line technique and it reveals consistent results even when valve input, oil temperature, and supply pressure change.

Application of the Preliminary Displacement Principle to the Temper Rolling Model

  • Lee, Won-Ho;Yuli Liu
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.225-231
    • /
    • 2001
  • A mathematical model for the analysis of roll gap phenomena in the strip temper rolling process is described. A new approach to solve the roll indentation and diverging problem in modeling of severe temper rolling cases is obtained by adopting the preliminary displacement principle of two contacted rough bodies to describe the friction behavior in the roll gap. The mechanical peculiarities of the temper rolling process, such as a high friction value with high roughness rolls and a non-circular contact arc, low reduction and non-negligible entry and exit elastic zones as well as central preliminary displacement zone etc., are all taken into account. The deformation of work rolls is calculated with the influence function method and an arbitrary contact are shape is permitted. The strip deformation is modeled by the slab method and the entry and exit elastic deformation zones are included. The preliminary displacement principle is used to determine the boundaries and to calculate the friction of the central preliminary displacement zone. The model is calibrated against the production mill data and installed in the setup computer of a temper rolling mill in POSCO. The validity and precision of the model have been proven through a comparison of the measured roll forces and the predicted ones.

  • PDF

Visual Servoing-Based Paired Structured Light Robot System for Estimation of 6-DOF Structural Displacement (구조물의 6자유도 변위 측정을 위한 비주얼 서보잉 기반 양립형 구조 광 로봇 시스템)

  • Jeon, Hae-Min;Bang, Yu-Seok;Kim, Han-Geun;Myung, Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.10
    • /
    • pp.989-994
    • /
    • 2011
  • This study aims to demonstrate the feasibility of a visual servoing-based paired structured light (SL) robot for estimating structural displacement under various external loads. The former paired SL robot, which was proposed in the previous study, was composed of two screens facing with each other, each with one or two lasers and a camera. It was found that the paired SL robot could estimate the translational and rotational displacement each in 3-DOF with high accuracy and low cost. However, the measurable range is fairly limited due to the limited screen size. In this paper, therefore, a visual servoing-based 2-DOF manipulator which controls the pose of lasers is introduced. By controlling the positions of the projected laser points to be on the screen, the proposed robot can estimate the displacement regardless of the screen size. We performed various simulations and experimental tests to verify the performance of the newly proposed robot. The results show that the proposed system overcomes the range limitation of the former system and it can be utilized to accurately estimate the structural displacement.

Displacement Control of Pneumatic Actuator Equipped with PLC and Proximity Sensors (PLC와 근접센서를 이용한 공압 실린더의 변위제어)

  • Kim, Gun-Hoi;So, Jung-Duck
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.90-96
    • /
    • 2008
  • A pneumatic system was proposed to evaluate displacement accuracy of the pneumatic actuator without external load and to analyze capability of integration of the proposed valve system. The proposed pneumatic system consisted of a combination of pneumatic valves, two proximity sensors, and a programmable logic controller(PLC). The position controller is based on the PLC controller connected with the proximity sensors. Displacement accuracy of the pneumatic cylinder stroke was tested by varying air pressures of the supply and discharge-side and strokes of the pneumatic cylinder. The displacement accuracy of the pneumatic cylinder stroke increased as the supply and discharge side of air pressure increased at the stroke length of 133mm. Also the displacement accuracy increased as the stroke length increased with a fixed supply and discharge side of air pressure of the pneumatic cylinder as 3.5 and $4.5kg/cm^2$, respectively. The most accurate displacement of the pneumatic cylinder(i.e., standard deviation of 0.01 mm) was obtained at the supply and discharge side of air pressure of 4.0 and $5.0kg/cm^2$, respectively, and strokes of 170 and 190 mm among arbitrarily selected supply and discharge side air pressures and strokes.

The Proposition of Efficient Nonlinear Solution Technique for Space Truss (공간 트러스에 대한 효율적인 비선형 해석 기법 제안)

  • 석창목;권영환
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.481-490
    • /
    • 2002
  • The purpose of this paper is to evaluate the efficiency of various solution techniques and propose new efficient solution techniques for space trusses. Solution techniques used in this study are three load control methods (Newton-Raphson Method, modified Newton-Raphson Method, Secant-Newton Method), two load-displacement control methods(Arc-length Method, Work Increment Control Method) and three combined load-displacement control methods(Combined Arc-length Method I , Combined Arc-length MethodⅡ, Combined Work Increment Control Method). To evaluate the efficiency of these solution techniques, we must examine accuracy of their solutions, convergences and computing times of numerical examples. The combined load-displacement control methods are the most efficient in the geometric nonlinear solution techniques and in tracing post-buckling behavior of space truss. The combined work increment control method is the most efficient in tracing the buckling load of spate trusses with high degrees of freedom.

Frictional property comparisons of conventional and self-ligating lingual brackets according to tooth displacement during initial leveling and alignment: an in vitro mechanical study

  • Kim, Do-Yoon;Lim, Bum-Soon;Baek, Seung-Hak
    • The korean journal of orthodontics
    • /
    • v.46 no.2
    • /
    • pp.87-95
    • /
    • 2016
  • Objective: We evaluated the effects of tooth displacement on frictional force when conventional ligating lingual brackets (CL-LBs), CL-LBs with a narrow bracket width, and self-ligating lingual brackets (SL-LBs) were used with initial leveling and alignment wires. Methods: CL-LBs (7th Generation), CL-LBs with a narrow bracket width (STb), and SL-LBs (In-Ovation L) were tested under three tooth displacement conditions: no displacement (control); a 2-mm palatal displacement (PD) of the maxillary right lateral incisor (MXLI); and a 2-mm gingival displacement (GD) of the maxillary right canine (MXC) (nine groups, n = 7 per group). A stereolithographic typodont system and artificial saliva were used. Static and kinetic frictional forces (SFF and KFF, respectively) were measured while drawing a 0.013-inch copper-nickel-titanium archwire through brackets at 0.5 mm/min for 5 minutes at $36.5^{\circ}C$. Results: The In-Ovation L exhibited lower SFF under control conditions and lower KFF under all displacement conditions than the 7th Generation and STb (all p < 0.001). No significant difference in SFF existed between the In-Ovation L and STb for a 2-mm GD of the MXC and 2-mm PD of the MXLI. A 2-mm GD of the MXC produced higher SFF and KFF than a 2-mm PD of the MXLI in all brackets (all p < 0.001). Conclusions: CL-LBs with narrow bracket widths exhibited higher KFF than SL-LBs under tooth displacement conditions. CL-LBs and ligation methods should be developed to produce SFF and KFF as low as those in SL-LBs during the initial and leveling stage.

The vibration isolating system using a magnetostrictive actuator (자기 변형 작동기를 이용한 진동 절연 시스템)

  • 정학근;박기환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.276-279
    • /
    • 1997
  • When a magnetostrictive material is exposed to a magnetic field, its geometry changes due to a magnetostrictive effect. The magnetostriction is analogous to the piezoeletricity. The displacement of the magnetostrictive material is proportional to the applied current while that of the piezoelectric material is proportional to the voltage. A magnetostrictive material generates large displacement and higher compressive force compared with a piezoeletric material. These advantages provide a good performance of a vibration isolation of a platform. In this work, it is applied to a driving actuator for vibration isolation of a platform. The properties of a magnetostrictive material are investigated in terms of hysteresis and displacement vs. applied current for a various preload. Modeling of the displacement of the vibration isolating actuator is performed as it behaves as a flow source. A sliding mode controller is designed to demonstrate the ability of the magnetostrictive actuator to reduce the vibration at the platform. The effectiveness of the proposed scheme is demonstrated through experimental works. The experimental results of the vibration of the platform axe presented in terms of time response and frequency response.

  • PDF

A Study on the Swash Plate Behavior of Variable Displacement Compressor for Automotive Air Conditioning System (차량용 가변용량 압축기의 사판 거동에 관한 연구)

  • Lee, Tae-Jin;Lee, Geon-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1335-1340
    • /
    • 2004
  • Due to the distinct advantages of comfort, drive ability and fuel economy standard, the variable displacement swash plate type compressor which can control the compressor displacement by increasing or reducing the swash plate angle has been developed for automotive air-conditioning system. That can be obtained constant temperature of car room on the variation cooling capacities or engine speeds. This paper was carried out the analysis of swash plate behavior to obtain the forces and moments applied to the swash plate and to get the variable controlability on the variation of compressor speeds and swash plate chamber pressures. The results of simuation agree very well with the experimental data.

  • PDF

A study of a motion estimation with the block-based method (Block-Based Method를 이용한 Motion Estimation에 관한 연구)

  • 김상기;이원희;김재영;변재응;이범로;정진현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1-4
    • /
    • 1996
  • It is difficult that a non-translational motion in a block is estimated by the block matching algorithm (BMA). In this paper, a nodal-displacement-based deformation model is used for this reason. This model assumes that a selected number of control nodes move freely in a block and that displacement of any interior point can be interpolated from nodal displacements. As a special case with a single node this model is equivalent to a translational model. And this model can represent more complex deformation using more nodes. We used an iterative gradient based search algorithm to estimate nodal displacement. Each iteration involves the solution of a simple linear equation. This method is called the deformable block matching algorithm (DBMA).

  • PDF

Development of a mathematic model for a variable displacement vane pump for engine oil (엔진오일용 가변 베인펌프의 수학적 모델 개발)

  • Truong, D.Q.;Ahn, K.K.;Yoon, J.I.;Lee, J.S.
    • Journal of Drive and Control
    • /
    • v.9 no.4
    • /
    • pp.42-51
    • /
    • 2012
  • Variable displacement vane-type oil pumps represent one of the most innovative pump types for industrial applications, especially for engine lubrication systems. This paper deals with a modeling method for theoretical flow rate investigation of a typical variable displacement vane-type oil pump. This theoretical model is based on the pump geometric design and dynamic analyses. It can be considered as mandatory steps for a deeper understanding of the pump operation as well as for effectively implementing the pump control mechanisms to satisfy the urgent demands of engine lubrication systems. The developed pump model is finally illustrated by numerical simulations.